0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Прибор для измерения силы

Единицы силы. Динамометр

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Наравне с ньютоном, используются кратные и дольные единицы силы:

килоньютон 1 кН = 1000 Н;

меганьютон 1 МН = 1000000 Н;

миллиньютон 1 мН = 0,001 Н;

микроньютон 1 мкН = 0,000001 Н и т. д.

Под действием силы скорость тела изменяется. Другими словами, тело начинает двигаться не равномерно, а ускоренно. Точнее, равноускоренно: за равные промежутки времени скорость тела меняется одинаково. Именно изменение скорости тела под действием силы физики используют для определения единицы силы в 1 Н.

Единицы измерения новых физических величин выражают через так называемые основные единицы – единицы массы, длины, времени. В системе СИ – это килограмм, метр и секунда.

Пусть под действием некоторой силы скорость тела массой 1 кг изменяет свою скорость на 1 м/с за каждую секунду. Именно такая сила и принимается за 1 ньютон.

Один ньютон (1 Н) – это сила, под действием которой тело массой 1 кг изменяет свою скорость на 1 м/с каждую секунду.

2.Сила тяжести и масса тела

Экспериментально установлено, что сила тяжести, действующая вблизи поверхности Земли на тело массой 102 г, равна 1 Н. Масса 102 г составляет приблизительно 1/10 кг, или, если быть более точным,

Но это означает, что на тело массой 1 кг, то есть на тело в 9,8 раз большей массы, у поверхности Земли будет действовать сила тяжести 9,8 Н. Таким образом, чтобы найти силу тяжести, действующую на тело любой массы, нужно значение массы (в кг) умножить на коэффициент, который принято обозначать буквой g:

Мы видим, что этот коэффициент численно равен силе тяжести, которая действует на тело массой 1 кг. Он носит название ускорение свободного падения. Происхождение названия тесно связано с определением силы в 1 ньютон. Ведь если на тело массой 1 кг действует сила не 1 Н, а 9,8 Н, то под действием этой силы тело будет изменять свою скорость (ускоряться) не на 1 м/с, а на 9,8 м/с каждую секунду. В старшей школе этот вопрос будет рассмотрен более подробно.

Теперь можно записать формулу, позволяющую рассчитать силу тяжести, действующую на тело произвольной массы m(Рис. 1).

Рис. 1. Формула для расчета силы тяжести

Следует знать, что ускорение свободного падения равно 9,8 Н/кг только у поверхности Земли и с высотой уменьшается. Например, на высоте 6400 км над Землей оно меньше в 4 раза. Однако при решении задач этой зависимостью мы будем пренебрегать. Кроме того, на Луне и других небесных телах также действует сила тяжести, и на каждом небесном теле ускорение свободного падения имеет свое значение.

3. Измерение силы. Динамометр

На практике часто приходится измерять силу. Для этого используется устройство, которое называется динамометр. Основой динамометра является пружина, к которой прикладывают измеряемую силу. Каждый динамометр, помимо пружины, имеет шкалу, на которую нанесены значения силы. Один из концов пружины снабжен стрелкой, которая указывает на шкале, какая сила приложена к динамометру (Рис. 2).

Рис. 2. Устройство динамометра

В зависимости от упругих свойств пружины, использованной в динамометре (от ее жесткости), под действием одной и той же силы пружина может удлиняться больше или меньше. Это позволяет изготавливать динамометры с различными пределами измерения (Рис. 3).

Рис. 3. Динамометры с пределами измерения 2 Н и 1 Н

Существуют динамометры с пределом измерения в несколько килоньютонов и больше. В них используется пружина с очень большой жесткостью (Рис. 4).

Рис. 4. Динамометр с пределом измерения 2 кН

Если подвесить к динамометру груз, то по показаниям динамометра можно определить массу груза. Например, если динамометр с подвешенным к нему грузом показывает силу 1 Н, значит, масса груза равна 102 г.

4. Сила – векторная величина

Обратим внимание на то, что сила имеет не только численное значение, но и направление. Такие величины называют векторными. Например, скорость – это векторная величина. Сила – также векторная величина (говорят еще, что сила – вектор).

Рассмотрим следующий пример:

Тело массой 2 кг подвешено на пружине. Необходимо изобразить силу тяжести, с которой Земля притягивает это тело, и вес тела.

Вспомним, что сила тяжести действует на тело, а вес – это сила, с которой тело действует на подвес. Если подвес неподвижен, то численное значение и направление веса такие же, как у силы тяжести. Вес, как и сила тяжести, рассчитываются по формуле, изображенной на рис. 1. Массу 2 кг необходимо умножить на ускорение свободного падения 9,8 Н/кг. При не слишком точных расчетах часто ускорение свободного падения принимают равным 10 Н/кг. Тогда сила тяжести и вес приблизительно будут равны 20 Н.

Для изображения векторов силы тяжести и веса на рисунке необходимо выбрать и показать на рисунке масштаб в виде отрезка, соответствующего определенному значению силы (например, 10 Н).

Тело на рисунке изобразим в виде шара. Точка приложения силы тяжести – центр этого шара. Силу изобразим в виде стрелки, начало которой расположено в точке приложения силы. Стрелку направим вертикально вниз, так как сила тяжести направлена к центру Земли. Длина стрелки, в соответствии с выбранным масштабом, равна двум отрезкам. Рядом со стрелкой изображаем букву , которой обозначается сила тяжести. Так как на чертеже мы указали направление силы, то над буквой ставится маленькая стрелка, чтобы подчеркнуть, что мы изображаем векторную величину.

Поскольку вес тела приложен к подвесу, начало стрелки, изображающей вес, помещаем в нижней части подвеса. При изображении также соблюдаем масштаб. Рядом помещаем букву , обозначающую вес, не забывая над буквой поместить небольшую стрелку.

Полное решение задачи будет выглядеть так (Рис. 5).

Рис. 5. Оформленное решение задачи

5. Три характеристики силы

Еще раз обратите внимание на то, что в рассмотренной выше задаче численные значения и направления силы тяжести и веса оказались одинаковыми, а точки приложения – различными.

При расчете и изображении любой силы необходимо учитывать три фактора:

· численное значение (модуль) силы;

· точку приложения силы.

6. Краткие итоги

Сила – физическая величина, описывающая действие одного тела на другое. Обычно она обозначается буквой F. Единица измерения силы – ньютон. Для того чтобы рассчитать значение силы тяжести, необходимо знать ускорение свободного падения, которое у поверхности Земли составляет 9,8 Н/кг. С такой силой Земля притягивает к себе тело массой 1 кг. При изображении силы необходимо учитывать ее числовое значение, направление и точку приложения.

Список литературы

  1. Перышкин А. В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
  2. Перышкин А. В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.
  3. Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.
Читать еще:  Hyundai solaris 2020 технические характеристики

Дополнительные ссылки на ресурсы сети Интернет

  1. Единая коллекция цифровых образовательных ресурсов (Источник).
  2. Единая коллекция цифровых образовательных ресурсов (Источник).
  3. Единая коллекция цифровых образовательных ресурсов (Источник).
  4. Единая коллекция цифровых образовательных ресурсов (Источник).

Домашнее задание

  1. Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7–9 классов №327, 335–338, 351.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Прибор для измерения силы

Прибор для измерения силы, или динамометр – устройство, с помощью которого измеряется величина силы или момента силы. Изобретенное более 200 лет назад оно со временем постепенно совершенствовалось, становясь все более компактным, удобным и точным. О том, что собой данный прибор представляет, из чего состоит, как работает, каких видов бывает, пойдет речь в данной статье.

Измерение силы в системе СИ

В системе СИ единицей измерения силы являются ньютоны (сокращенно Н). Один ньютон – это такая сила, которая за 1 секунду способна изменить скорость движения твердого тела, имеющего массу 1 кг, на 1 м/с.

На заметку. Так как ньютон является в системе СИ не основной, а производной единицей, ее обозначение пишется с большой (заглавной) буквы, в то время как полное название – с маленькой.

Так как ньютоны являются производной единицей, то в современных измерителях они заменены на килограммы. Единственной сферой, где данную единицу измерения используют, являются лабораторные учебные приборы, применяемые в школах, средне специальных учебных заведениях.

Принцип действия и история изобретения

Первым устройством для измерения силы были изобретенные в первой половине XVIII века весы. Самый простой пружинный измеритель был сконструирован только спустя 100 лет в 1830 году английским ученым Ричардом Солтером. Вслед за измерителями механическими в первой половине XX были изобретены гидравлические приборы. Более совершенные и точные электрические динамометры появились уже во время бурного развития полупроводниковых приборов во второй половине XX века.

Самый простой измеритель силы имеет следующее принципиальное устройство:

  • Упругий силовой элемент – упругое тело, на которое напрямую воздействует измеряемая сила. Таким элементом могут быть стальная, обладающая высокой упругостью пружина, вода, различные датчики.
  • Измеряющее устройство (аналоговое или цифровое) – жидкокристаллический дисплей, круглый градуированный циферблат или шкала, по которым перемещается подвижная стрелка.

Работает самый простой пружинный динамометр следующим образом:

  1. На упругий силовой элемент – пружину воздействует измеряемая сила, вызывая его деформацию (растяжение).
  2. Растягивающаяся пружина приводит в движение закрепленную на ней стрелку, которая, передвигаясь по вертикальной шкале, регистрирует величину приложенного к концу упругого элемента усилия.
  3. После снятия усилия пружина сжимается, стрелка возвращается в исходное положение, соответствующее нулевому значению.

На заметку. Основой функционирования любого динамометра является закон Гука, гласящий, что величина возникающей в упругом теле деформации прямо пропорционально вызвавшему ее усилию.

Точность и корректность получаемых с помощью такого прибора данных гарантированы только при условии применения в его конструкции упругого тела, деформирующегося под воздействием внешней силы и принимающего после его прекращения исходное состояние.

К таким телам относятся всевозможные пружины, а также заключенные в цилиндры жидкости.

Виды приборов

В зависимости от конструкции и принципа действия, все динамометры подразделяются на механические, гидравлические, электрические. Особой категорией измерителей силы являются одноразовые датчики.

Механические (рычажные или пружинные) динамометры

Механические динамометры измеряют силу и ее момент, благодаря таким физическим процессам, как упругое растяжение и сжатие.

Основными разновидностями таких приборов являются:

  • Рычажные – в таких приборах упругим телом служит рычаг, деформация которого передается на соединенный с ним датчик или измерительное устройство;
  • Механические – это самые простые и распространенные динамометры, состоят из упругой пружины, соединенной со стрелкой, перемещающейся по круглой или вертикальной шкале, с нанесенными делениями, или датчиком, который передает электрический сигнал на электронный блок с электронным табло (монохромным жидкокристаллическим дисплеем).

На заметку. Перед тем, как измерить силу с помощью механического динамометра, являющегося по своей сущности и конструкции обычным безменом, обязательно убеждаются в том, что стрелка на круглой или вертикальной шкале расположена на значении «0». Если стрелка сбилась и показывает при отсутствии нагрузки значение больше нуля, то значит, что упругий элемент претерпел непоправимую деформацию, вызванную приложением к нему нагрузки, значительно превышающей предельно допустимую. Такой прибор уже не будет точным и со временем выйдет из строя.

Гидравлический динамометр

Гидравлический измеритель состоит из:

  • Нескольких цилиндров, внутри которых находятся подвижные штоки с поршнями;
  • Рычага, закрепленного на верхней части штоков;
  • Измеряющего устройства (манометра).

В качестве рабочей жидкости в таких измерителях применяется масло.

Работает такой прибор следующим образом:

  1. Прикладываемое к рычагу усилие через штоки и поршни воздействует на находящуюся в цилиндрах жидкость;
  2. Вытесняемая жидкость по трубкам поступает к манометру;
  3. Манометр измеряет давление поступившей из цилиндров жидкости и отображает его на круглой аналоговой стрелочной шкале или жидкокристаллическом монохромном цифровом дисплее в виде определённого значения воздействующего на рычаг усилия.

Такие приборы позволяют определять значение силы с большей точностью, чем механические аналоги. Однако, по сравнению с последними, такие динамометры характеризуются более высокой ценой, дорогостоящим ремонтом и обслуживанием, неточностью при разгерметизации цилиндров и появлении протечек рабочей жидкости.

Электрический динамометр

Электрические динамометры состоят из:

  • Упругого элемента, соединённого с реагирующим на его деформацию датчиком индуктивного, емкостного, пьезоэлектрического, вибрационно-частотного или тензорезисторного типа;
  • Усилителя поступающего от датчика электрического сигнала;
  • Электронного блока, оборудованного дисплеем.

Принцип действия такого прибора достаточно прост:

  1. Усилие, прилагаемое к упругому телу, регистрируется датчиком;
  2. Датчик посылает электрический сигнал на усилитель, который, в свою очередь, передает его на электронный блок;
  3. Электронный блок со встроенной микросхемой переводит полученный от усилителя сигнал в графическое изображение значения силы на дисплее.

На заметку. Так как такие электрические приборы, в отличие от большинства механических и гидравлических, снабжены электронным блоком и дисплеем, перед использованием их необходимо включать специальной кнопкой. Питание таких приборов осуществляется от встроенных аккумуляторных батарей. Некоторые модели можно для обеспечения питанием подключать к сети, имеющей напряжение 220 В. Устройства, имеющие разряженное питание или не подключённые к сети, включаться и работать не будут.

Одноразовые датчики

Такие датчики, в отличие от описанных выше аналогов, используются для измерения разрушительных нагрузок, имеющих огромную мощность: очень сильного удара, мощного взрыва. Однако перед тем, как потерять целостность и полностью выйти из строя, они достаточно точно измеряют и передают на расположенный на безопасном расстоянии электронный блок данные о силе, разрушившей их.

Применение динамометров

Измерители силы широко используются в транспорте, коммунальном хозяйстве, спорте и реабилитационной медицине, робототехнике, создании протезов, производстве весов, строительстве гидротехнических сооружений, испытании тяговых механизмов грузовых автомобилей, электро,- и тепловозов.

На заметку. Узнать о том, какой прибор служит для более точного измерения силы, можно на специализированных строительных, автомобильных или спортивных форумах, сайтах производителей и поставщиков подобных устройств. Также на данных информационных интернет ресурсах можно получить помощь в виде онлайн консультации по любому связанному с динамометрами вопросу.

Читать еще:  Диагностика автомобиля с помощью смартфона

Основными примерами повседневного использования динамометров являются:

  • Обычные весы (электронные и аналоговые);
  • Медицинские силомеры, используемые для определения усилия кистевого сжатия;
  • Динамометрические (моментные) ключи, применяемые для затяжки резьбовых соединений с определенным усилием.

Знание того, каким прибором измеряют силу, позволяет не только взвешивать различные предметы с помощью безменов и весов, но и соблюдать усилия затяжки резьбовых соединений, производить определение состояния тонуса мышц рук.

Видео

Наглядно действие такого прибора можно посмотреть в следующем видео.

Приборы для измерения силы и их поверка

Используемые в строительстве силоизмерительные приборы и машины по принципу действия можно разделить на три основные группы:

  • 1) приборы, основанные на уравновешивании измеряемой силы силой тяжести;
  • 2) приборы, основанные на измерении деформаций;
  • 3) приборы, основанные на измерении давления.

Приборы первой группы представляют собой рычажную систему, при помощи которой измеряемая сила уравновешивается массой груза. На этом принципе основаны эталонные рычажные динамометры и некоторые испытательные приборы и машины. Например, прибор Михаэлиса (рис. 7.1) и машина МНИ-100 для испытания на изгиб стандартных образцов — балочек из цементного теста размерами 40 х 40 х 160 мм.

Приборы первой группы имеют высокую точность и чувствительность при большом диапазоне измерений, долговременную стабильность характеристик при минимальном уходе, малую зависимость показаний от температуры. Их главными недостатками являются большие габаритные размеры, высокая стоимость и узкое назначение. При необходимости дистанционной передачи показаний требуется применение сложных вторичных преобразователей.

Приборы второй группы состоят из упругого звена, воспринимающего измеряемую силу, с последующим преобразованием возникающей деформации в показания прибора. Приборы этой группы наиболее универсальны и находят все большее распространение. При их создании используют следующие типы преобразователей: механический, потенциометрический, индуктивный, тензометрический, пьезоэлектрический и др.

Рис. 7.1. Прибор Михаэлиса:

  • 1 — основание; 2 — образец; 3 — стойка; 4,1 — рычаги; 5 — серьга;
  • 6 — груз; 8 — консоль; 9 — сосуд с дробью; 10 — задвижка; 11 — ведерко; 12 — зуб задвижки; 13 — захват

Механические преобразователи применяются, например, в пружинных весах с цилиндрической пружиной, которая через рычажный механизм связана с указателем отсчетного устройства с круговым циферблатом. Основным недостатком является необходимость иметь при взвешивании значительные деформации пружины (до 30 мм). В механических динамометрах с упругим звеном, имеющим незначительные деформации (до 0,25 мм), для их измерения и регистрации используют индикаторы часового типа с ценой деления 0,01 мм. В этом случае показания получают в миллиметрах. Показанный на рис. 7.2 эталонный динамометр третьего разряда имеет погрешность показаний не более ±0,5% и используется в основном для градуировки и поверки рабочих испытательных машин и прессов.

Эталонные динамометры подобного типа, отличающиеся конфигурацией упругого элемента и конструкцией передаточного механизма, изготавливают для диапазонов измерений 100. 5 х Ю 6 Н. Их

Рис. 7.2. Эталонный динамометр 3-го разряда на нагрузку 30 кН:

1 — индикатор часового типа с ценой деления 0,01 мм; 2 — упругий элемент

основным достоинством является малая зависимость от изменений температуры, а основным недостатком — получение измерительной информации в единицах длины и невозможность ее автоматической передачи на расстояние.

В приборах второй группы с использованием потенциометрического, индуктивного, тензометрического, пьезоэлектрического преобразователей деформация от приложения силы преобразуется в электрическую величину, удобную для передачи на любые расстояния, а также для последующего преобразования и обработки. Это главное достоинство обеспечило их наиболее широкое распространение.

  • 1. Потенциометрические преобразователи используют для преобразования линейного или углового перемещения в изменение тока, пропускаемого через обмотку потенциометра. Зависимость выходного напряжения от перемещения ползунка потенциометра получается линейной при условии, что сопротивление всей измерительной цепи во много раз превышает сопротивление обмотки потенциометра. Соотношение сопротивлений выбирают исходя из допускаемого отклонения от линейности порядка 1%. Обмотку выполняют из манганина, вольфрама, константана, платино-иридия и других высокоомных сплавов с диаметром провода 0,01. 0,2 мм.
  • 2. Индуктивные преобразователи основаны на преобразовании линейного перемещения в индуктивность катушки. Наибольшее распространение получили конструкции, использующие схему дифференциального трансформатора. Они используются в динамометрах растяжения под нагрузки до 5 т. При высокой точности, чувствительности и универсальности эти преобразователи имеют значительные размеры и высокую стоимость.
  • 3. Тензометрические преобразователи получили широкое распространение благодаря своей универсальности. Принцип их действия основан на изменении электрического сопротивления металлической проволоки или волокон и нитей из других материалов при их деформировании. Традиционные проволочные тензорезисторы (рис. 7.3) изготавливают из нихромовой или константановой проволоки диаметром 0,015. 0,05 мм, имеющей большое удельное сопротивление и высокую чувствительность к деформации. Тензорезистор покрывают тонкой эластичной изоляционной пленкой и крепят к упругому элементу динамометра. Разработаны кремневые монокристаллические тензопре- образователи, которые применяют при изготовлении высокоточных силоизмерительных устройств, в том числе весов с диапазоном взвешивания 0,2. 500 кг.

Рис. 7.3. Схема проволочного тензорезистора

4. Пьезоэлектрические преобразователи основаны на так называемом пьезоэффекте — способности некоторых кристаллов генерировать электрические заряды в результате приложения к ним силовых воздействий. Для изготовления пьезопреобразователей используют кристаллы кварца, сегнетовой соли, сернокислого лития и других материалов.

Основное преимущество пьезопреобразователей заключается в их большой жесткости, благодаря которой они обладают высокой частотой собственных колебаний при малых деформациях. Их используют при измерениях быстроменяющихся величин давлений или ускорений (виброизмерительная аппаратура, акселерометры и др.)

Кроме рассмотренных преобразователей силы, используют и другие физические зависимости. Заслуживают внимание, например, вибрационные динамометры, принцип действия которых основан на изменении собственной частоты колебаний упругого элемента под действием приложенных к нему сил. Собственная частота колебаний упругого элемента динамометра, являющаяся мерой приложенной силы, преобразуется в электронном регистраторе в показания усилия.

На этом же принципе основана работа прибора ИНК-2.ЗК, выпускаемого научно-производственным предприятием «Карат». Прибор предназначен для измерения напряжений в арматуре при изготовлении преднапряженных железобетонных конструкций и измерения параметров виброустановок, применяемых для уплотнения бетонных смесей. Принципиальное отличие от вибрационного динамометра состоит в том, что прибор ИНК-2.ЗК не имеет собственного упругого элемента, а измеряет собственную частоту колебаний арматурного стержня и преобразует эту величину в показания усилия. Прибор измеряет частоты в диапазоне 5. 200 Гц с предельной погрешностью 0,2%. Указанным частотам соответствуют напряжения 50. 2000 МПа в арматурных элементах в зависимости от их длины, диаметра, материала и вида (отдельный стержень или прядь). Погрешность измерения напряжения полностью зависит от условий выполнения градуировочных работ и может быть значительно снижена путем выполнения дополнительной градуировки для реальных условий выполнения измерений и введения соответствующих поправок. По данным разработчиков предельная погрешность составляет 4% при работе без поправок.

Приборы третьей группы, основанные на измерении давления, представляют собой цилиндр и поршень, при относительном перемещении которых изменяется давление жидкости, воздействующей на манометр или силоизмерительный механизм торсионного, пружинного или рычажно-маятникового типа. Преимуществами силоизмерительных приборов, основанных на измерении давления, являются сравнительная простота конструкции, большая выносливость, отсутствие температурной погрешности. Основной недостаток — погрешность, обусловленная трением в поршневой паре. Приборы этой группы используют для измерения как статических, так и динамических силовых воздействий.

В строительстве из приборов этой группы наиболее широко используются гидравлические прессы для определения прочности бетонов и других строительных материалов (рис. 7.4).

Выпускаются прессы с верхними пределами нагрузок 25. 5000 кН с высотой рабочего пространства соответственно 250. 1200 мм и размерами опорных плит от 160 х 160 мм до 550 х 550 мм. Большинство отечественных прессов имеют ход поршня рабочего цилиндра равный 50 мм и регулируемую скорость его перемещения 0. 20 мм/мин. Предельная погрешность силоизмерительных устройств не более 2%, начиная с 0,2 предельного значения шкалы.

Читать еще:  Самые тихие зимние шипованные шины

Рис. 7.4. Принципиальная схема гидравлического пресса:

  • 1 — станина; 2 — стойки; 3 — траверса; 4 и 5 — плиты; 6 — поршень;
  • 7 — силоизмеритель; 8 — насос; 9 — электродвигатель

Гидравлические прессы используют также для испытания строительных материалов на ползучесть и долговременную прочность. Главной особенностью этих испытаний является необходимость обеспечения постоянства нагрузки на испытываемый образец в течение длительного времени (до нескольких месяцев) при больших размерах нагрузок (до 2000 кН).

Применение для этих целей рычажных грузовых устройств, обеспечивающих наибольшее постоянство нагрузки, возможно только при незначительных рабочих нагрузках. А применение машин с упругим звеном неизбежно приводит к снижению величины нагрузки из-за релаксации.

Гидравлические прессы обеспечивают высокое постоянство нагрузки при использовании воздушных стабилизаторов нагрузки, которые представляют собой заполненные воздухом металлические баллоны значительной емкости, соединенные с гидравлической системой пресса. При незначительных утечках жидкости из системы давление практически не изменяется.

Прибор для измерения силы тока. Как измерить силу тока мультиметром

28 Ноя 2016г | Раздел: Радио для дома

Здравствуйте, уважаемые читатели сайта sesaga.ru. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА.

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный. Приборы, служащие для измерения тока, называют амперметрами, миллиамперметрами и микроамперметрами. Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми.

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1», а около второго «PА2».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой, то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m, 20m, 200m, 10А. Например. На пределе «20m» можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1, а в разрыв цепи включим мультиметр РА1. Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m», диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m», который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8», что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m».

Отключаем питание. Переводим переключатель на предел «20m». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица. Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А», еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А» сразу же переставляйте плюсовой (красный) щуп на свое штатное место. Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при измерении напряжения вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Ссылка на основную публикацию
Adblock
detector
×
×