2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зажигание с двумя свечами на цилиндр

Зачем нужны две свечи на цилиндр в двигателях спортивных автомобилей

В гоночных автомобилях на один цилиндр используется две свечи. Для чего это сделано и можно ли делать так в любом другом не профессиональном автомобиле? Что изменится после подобной модификации и как со всем этим потом ездить.

Сильные стороны

    • Обеспечивается равномерное топливное сгорание, благодаря чему расход становится более экономичным.
  • Увеличивается надежность, что очень важно в гонках. Так, например, если вдруг одна свеча выйдет из строя, вторая продолжит функционировать.
  • В сочетании с рядом других доработок, наблюдается усиление мощностей автомобиля.
  • Крутящий момент изменяется в сторону меньших оборотов.
  • Улучшается приемистость.
  • Детонационная стойкость увеличивается на 1-3 единицы, что очень кстати для движков с механическими нагнетателями.

Слабые стороны

Среди минусов можно назвать только то, что сложность конструкции приводит к удорожанию двигателя. По этой причине такая система не устанавливалась в потоковом режиме на автомобилях массового производства вплоть до 60-х годов.

Принцип конструкции

  • Во многом принцип самого устройства аналогичен любой другой искровой системе на базе магнето или аккумуляторной батареи, но разница все же имеется. Так, например, в этом случае в обязательном порядке устанавливается дополнительный прерыватель-распределитель зажигания, для каждого цилиндра ставится отдельные катушки, изменяется и головка цилиндра. В качестве примера можно рассмотреть 12-тицилиндровый V-образный движок, объемом 2.0 л, который ставился на Alfa Romeo Tipo 33 — в нем было два прерывателя-распределителя зажигания, и каждый из них питал «свой» ряд из 6 свечек.
  • Расположение самих свечей в цилиндрах может быть разным: вертикальным, параллельным или же с легким смещением так, чтобы электроды располагались близко к центру камеры сгорания, либо ближе к стенкам цилиндра. Конкретное расположение зависит от камеры сгорания, а точнее от ее формы и поршня, размера и количества клапанов, объема движка и т.п.

Увеличение мощности

Повлиять на увеличение крутящего момента и мощности можно путем увеличения количества подаваемого горючего, а также на полноту его сжигания. К примеру, на болиды Гран-при еще довоенного периода ставились механические нагнетатели. Но в тоже время у них был серьезный недостаток — высокий расход топлива.

Одна свеча была просто не в силах воспламенить всю поступающую смесь, поэтому некоторая ее топлива тратилась впустую. После того, как в цилиндр была установлена вторая свечка, расход горючего несколько снизился, а мощность мотора серьезно увеличивалась — в Alfa Romeo, например, сила возрастала до 20%.

В послевоенный период, на Aston Martin DB3S — собранный специально для соревновательных целей — ставили 6-цилиндровый 3.0 л 185-сильный движок Lagonda. Работая над проектом, специалисты приняли решение установить головку блока с четырьмя цилиндрами, дабы увеличить пропускную способность, а для того, чтобы горючая смесь сгорала более полно и равномерно, конструкторы решили поставить дополнительно еще 6 свечей, которые питались от своего распределителя. В конечном итоге мощность движка выросла до 240 лошадей.

Установка двухсвечных цилиндров была популярной среди гоночных автомобилей Aston Martin, Ferrari, Alfa Romeo и др. Подобный подход позволял увеличить надежность автомобиля, его экономичность и мощность.

Упомянем также и разработанные для группы С спорткары прототипа Mazda. Модели 787В и 767В имели роторные четырехсекционные движки с индексами R26В и 13J соответственно. Мощность движка с индексом 13J и объемом 2,6 литра была 630 лошадей, а у моделей R26В, где в каждой секции было уже по три свечи, мощность вырастала до поразительных 900 лошадей! Но при этом, с целью не выходить за рамки дозволенного регламентом расхода топлива, мощность двигателя намеренно установили на планке 690 лошадок.

Если вам понравилось, пожалуйста, поделитесь с друзьями!

Chevrolet Aveo Sedan НяШКА › Logbook › [Info] Две свечи на цилиндр в гоночных двигателях.

Преимущества:
* Две свечи на цилиндр обеспечивают более ровное сгорание топлива что повышает экономичность.
* Повышается надежность, что особенно важно в гонках на выносливость: в случае выхода одной свечи из строя вторая будет продолжать работу.
* Увеличение мощности (в сочетании некоторыми другими доработками)
* Изменение кривой крутящего момента в сторону более низких оборотов.
* Улучшение приемистости.
* Увеличение (на 1 – 3 ед.) детонационной стойкости горючего, что актуально для моторов с механическими нагнетателями, устанавливавшихся на болиды Гран-При с начала тридцатых годов.

Недостатки:
* Значительное усложнение и, как следствие, удорожание конструкции мотора, что практически не оставило шансов на распространение такой системы зажигания на серийных машинах вплоть до начала шестидесятых годов.

Конструкция:
* Во многом аналогична любой другой искровой системе на основе магнето или аккумулятора, однако отличия все же имеются: принято устанавливать дополнительный распределитель зажигания, отдельные катушки зажигания для каждого цилиндра, а также значительно изменять головку блока цилиндров. Например, на V-образном 12-ти цилиндровом двигателе, объемом 2 литра, который устанавливался на спортивный прототип Alfa Romeo Tipo 33, имелось два распределителя зажигания и каждый из них питал свой ряд из шести свечей.
* Свечи могут располагаться в камере сгорания строго вертикально и параллельно, или быть смещены таким образом чтобы электроды находились ближе к центру камеры сгорания или возле стенок цилиндра. Все зависит от формы камеры сгорания и поршня, числа и размера клапанов, объема двигателя и т.д.

Увеличение мощности:
* Увеличения мощности и крутящего момента можно достигнуть, если увеличить количество поступаемого топлива и полноту его сгорания. Например, на довоенных болидах Гран-При были повсеместно распространены механические нагнетатели. Но в их применении также был серьезный недостаток — увеличение расхода топлива, а одна свеча просто не могла воспламенить всю смесь и некоторое ее количество расходовалось впустую. После установки в камеру сгорания второй свечи расход топлива незначительно уменьшался, а мощность возрастала (в случае с моторами Alfa Romeo до 20%). После войны, в специально построенном для соревнований Aston Martin DB3S, использовался рядный 6-ти цилиндровый трехлитровый двигатель Lagonda развивавший 180-185 л.с. Конструкторы решили увеличить пропускную способность в цилиндрах, установив головку блока с четырьмя клапанами, а для более равномерного и полного сгорания топливовоздушной смеси были добавлены еще шесть свечей питавшихся от своего распределителя. В итоге мощность возросла до 240 лошадиных сил. Так или иначе, в период с начала тридцатых и вплоть до середины семидесятых двигатели с двумя свечами на цилиндр были достаточно широко распространены в гоночных автомобилях Ferrari, Maserati, Aston Martin, Alfa Romeo и многих других: решение позволяло повысить надежность, мощность, экономичность. Стоит упомянуть созданные для Группы Ц спортивные прототипы Mazda. Модели 767B и 787B оснащались роторными 4-х секционными установками с индексами 13J и R26B соответственно. Если мощность 13J при рабочем объеме 2616 см3 (эквивалентно 5232 см3 для поршневого двигателя) составляла 630 лошадиных сил, то уже в R26B, на каждую секцию которого приходилось по три свечи, конструкторы добились потрясающей цифры в 900. Хотя для гонки, дабы расход топлива не превышал установленный регламентом предел, отдачу ограничили до 690 л.с.

Читать еще:  Ваз 2107 передний привод

Для чего в автомобиле может быть по две свечи на цилиндр?

  • Для чего в автомобиле может быть по две свечи на цилиндр?
  • История происхождения
  • Конструкционные особенности
  • Как работает система Твин Спарк
  • Преимущества системы Твин Спарк
  • Недостатки системы Твин Спарк
  • Обслуживание
  • Твин Спарк у разных производителей

Twin (двойная) Spark (искра) – две свечи на каждый цилиндр. Используется в системе зажигания, чтобы снизить расход бензина и эффективнее распределить мощность мотора.

История происхождения

Изначально Twin Spark использовался в авиастроении. На машинах впервые технология Twin Spark была использована итальянцами в 1914 году (модель Alfa Romeo Grand Prix). В 1960-х годах она применялась на гоночных моделях (благодаря этой технологии объем двигателя не меняли, но мощность возрастала). Технология позволяет достичь максимальной мощности мотора, уменьшить выброс вредных газов в атмосферу. Применялась данная система зажигания до 2009 года. Теперь выпускают двигатели с непосредственным впрыском (система более перспективная и совершенная).

Конструкционные особенности

Система Twin Spark подразумевает использование для поджога топлива двух свечей одновременно в одном цилиндре мотора. Таким образом, появляется две последовательные вспышки (между ними разрыв в сотые доли секунды) за один рабочий цикл.

Задержка между срабатыванием двух свечей для поджигания топлива в одном цилиндре возникала потому, что контакт одного бегунка (верхнего), стоящего напротив своего электрода, срабатывал на долю секунды раньше, чем второго (нижнего).

Как работает система Твин Спарк

Многих интересует принцип работы Twin Spark. В одном цилиндре двигателя работают две свечи. За один рабочий цикл происходит две вспышки с разницей в несколько долей секунд. Это позволяет сжигать 90% топлива за каждый цикл. Экономия горючего налицо.

Обычный двигатель внутреннего сгорания сегодня имеет 4 фазы работы: впрыск топлива, сжатие поршня в цилиндре, детонация топлива и выпуск отработанных газов. Классическая система зажигания не включает механизмы контроля работы клапанов. Они открываются одновременно.

Система Twin Spark имеет два отдельных распределительных вала, которые приводят в действие впускной и выпускной клапаны цилиндра. Отдельный вал контролирует фазы газораспределения: поэтому, в зависимости от оборотов двигателя, клапаны открываются раньше или позже. Распредвал Twin Spark движется по углу поворота коленчатого вала: вал опускается – открывается впускной клапан, а выпускной закрывается, и наоборот. Это позволяет смещать фазы газораспределения, а значит, экономится топливо.

Восьмиклапанные моторы зажигают рабочее топливо сразу в двух точках. Таким образом, с двух сторон в цилиндре происходит искра, что позволяет уменьшить угол опережения и обеспечить быстрое прохождение пламени. При этом поршень испытывает меньшее сопротивление (вспышка происходит позже), когда сжимает топливо, поднимаясь вверх к мертвой точке. В восьмиклапанных двигателях стоят выпускные клапаны с диаметром нижней части 44 мм. Это позволяет лучше проветривать камеру сгорания после искры.

В шестнадцатиклапанных двигателях в центре цилиндра стоит одна свеча, а на боковой части «купола» камеры сгорания стоит свеча меньшего диаметра. Это обеспечивает плавность холостого хода при смеси до 18:01 AFR! Экономия топлива также имеет место быть.

Преимущества системы Твин Спарк

Среди преимуществ можно назвать:

• крепкая двухрядная каленая цепь (гарантирует продолжительный срок работы). Имеет хорошую отдачу тепла. Правда, его работа создает немного шума;

• прочные шатуны и колено;

• перегрев не наблюдается;

• сбалансированная работа при критических нагрузках.

Недостатки системы Твин Спарк

Среди недостатков системы:

• слабый магниево-алюминиевый блок;

• дорогостоящий ремонт системы. Желательно брать оригинальные запчасти;

• конструктивная сложность мотора. Замена ремней ГРМ вызывает некоторые неудобства из-за конструкции двигателя;

• большой вес мотора.

Обслуживание

Для замены необходимо приобретать сразу два комплекта свечей. В обслуживании система 2 Spark дороговата.

Твин Спарк у разных производителей

Система зажигания Twin Spark стоит на 8-клапанных двигателях в автомобилях Alfa Romeo 75, 164 и 155 и на 16-клапанных моделях Alfa Romeo 145, 146, 155, GTV, Spider, GT и других.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Читать еще:  Harley davidson fat bob

Две синхронные искры

ДВЕ СИНХРОННЫЕ ИСКРЫ

ДВЕ СИНХРОННЫЕ ИСКРЫ

На многих современных автомобилях, оснащенных системой впрыска топлива (а таких в мире — большинство), применяется система зажигания с низковольтным распределением энергии. Часто неисправности в ней связаны с катушками зажигания нетрадиционной конструкции. О них рассказывает Антон УТКИН.

Неискушенный в технике автолюбитель, возможно, считает систему зажигания без обычного распределителя недавним достижением электроники. Между тем еще в 1961 году на ирбитском мотоцикле М-62 с двухцилиндровым оппозитным двигателем впервые появилась двухискровая (тогда еще шестивольтовая) катушка Б-201 (фото 1). В отличие от известных ранее, у нее было два высоковольтных вывода — от первого и последнего витков вторичной обмотки, которую полностью изолировали от «массы» (рис. 1). Такое передовое решение стало возможным благодаря четырехтактному циклу двигателя и чередованию вспышек в цилиндрах через каждый полный оборот коленвала. Высоковольтная цепь проходила через «массу» и искровые промежутки обеих свечей, каждая из которых либо поджигала топливную смесь в конце такта сжатия, либо проскакивала вхолостую в конце такта выпуска.

Но о применении двухискровых катушек на четырехцилиндровых моторах тогда речи не шло — электронное распределение низкого напряжения по двум каналам в ту пору еще не появилось. Впрочем, идея обойтись без «бегунка» уже будоражила умы. На фото 2 — один из вариантов самодельного двухканального трамблера для «Москвича», рассчитанного на работу с двумя двухискровыми или четырьмя обычными, но шестивольтовыми «бобинами». Его два прерывателя, расположенные под углом 90°, и кулачок с двумя гранями вместо четырех обеспечивали одновременное искрообразование на свечах каждой пары цилиндров дважды за один оборот коленвала.

Серийное применение на отечественных автомобилях двухискровая схема нашла в 1986 году на модели VAZ 21083–02 с микропроцессорным зажиганием. Специально для нее НИИАвтоприборов (ныне «Автоэлектроника») совместно с московским заводом АТЭ-2 разработал сухую, запрессованную в полипропилен двухискровую катушку высокой энергии с индексом 29.3705. Система включала две такие катушки, каждая из которых обслуживала свою пару цилиндров, а энергия между ними распределялась статически — с помощью контроллера и двухканального коммутатора. В сочетании с карбюратором эта система не давала особых преимуществ перед обычным трамблером, уступая последнему в простоте, надежности и цене, поэтому в 1990 году производство VAZ 21083–02 прекратили. Но годом раньше начался серийный выпуск «Оки», для двухцилиндрового мотора которой как раз и подошла двухискровая катушка 29.3705 в комплекте с обычным коммутатором и датчиком Холла.

К тому времени все недостатки этой катушки и причины ее частых отказов уже были хорошо известны конструкторам. Поэтому в 1992 году на конвейере АТЭ-2 появилась новая катушка 3009.3705, сделанная по лицензии французской фирмы «Дюселье» (ныне «Валео»). Ее важнейшее отличие от предшественницы — замкнутый магнитопровод, позволивший резко сократить магнитный поток рассеяния, повысить КПД и более чем вдвое уменьшить число витков обмоток, а значит, существенно сократить расход обмоточной меди. Многослойный каркас и новый материал изоляции уменьшили вероятность внутренних пробоев, характерных для катушки 29.3705. Последний вариант двухискровой катушки от АТЭ-2 — модель 3012.3705, освоенная в 1994 году. При сохранении энергетических параметров и надежности 3009.3705 она заметно меньше и легче. Именно 3012.3705 устанавливают на «Оку», а также на автомобили ГАЗ с двигателем ЗМЗ-406 (по две штуки). Ее копию малыми сериями делает уфимское ОНПП «Молния» для модификации «Москвича-2141» с микропроцессорным зажиганием. От московской она отличается нестандартной маркировкой (8Г4768049), материалом корпуса и цветом (он коричневый, а не серый, как у АТЭ-2).

А наиболее интегрированный (многофункциональный) прибор системы зажигания — это четырехискровой высоковольтный модуль 42.3705, выпускаемый на заводе АТЭ-2 для «самар» с впрыском топлива. Он включает в себя две двухискровые катушки и силовую часть двухканального коммутатора, залитые в единый компактный блок. Такое решение представляется оправданным лишь при достаточной надежности каждого элемента изделия, иначе при отказе одного из них придется менять весь дорогостоящий модуль. Видимо, это одна из причин, по которой большинство фирм в мире пока предпочитают раздельные приборы системы зажигания.

Условия искрообразования в системах с двухвыводными катушками почти не отличаются от тех, где есть распределитель, несмотря на наличие второго искрового промежутка. Дело в том, что падение напряжения в цепи вторичной обмотки распределяется по свечам неравномерно. В том цилиндре, где искра пробивает сжатую топливно-воздушную смесь, напряжение пробоя достигает 10 кВ, а в том, где она является «паразитной», то есть срабатывает вхолостую в конце такта выпуска, вполне достаточно 1–2 кВ. То есть потери составляют около 15% — не больше, чем в обычной системе, где «паразитная» искра проскакивает между «бегунком» и контактом крышки трамблера.

Практически единственная причина выхода из строя двухискровых катушек — внутренний пробой. Его симптомы порой ставят в тупик даже сведущего в электротехнике автолюбителя. Вот вам вопрос: может ли быть так, что на одной свече, подключенной к выводу двухискровой катушки, искра есть, а на другой, подключенной к другому выводу этой же катушки, — нет? На первый взгляд, при исправных свечах и высоковольтных проводах такого быть не может. Ведь в цепи последовательно соединенных потребителей работает либо все, либо ничего. Но не спешите с выводами! Про подобные чудеса мы слыхали от владельцев «Оки», рассказывавших, как мотор упорно «троил» (то бишь «единил»), несмотря на многократную замену свечи, а помогала лишь замена катушки зажигания. И вот наконец-то такая пробитая «бобина» попала к нам в руки.

Читать еще:  Схема стабилизатора напряжения на 12 вольт

Катушку 8Г4768049 принес в редакцию читатель — владелец «Москвича» с микропроцессорным зажиганием. Двигатель «троил», а при проверке «на искру» любая свеча, подключенная к выводу одной из катушек для второго цилиндра, упорно не желала работать. Но при этом свеча третьего цилиндра, подключенная к ней последовательно, прекрасно искрила! Заменили катушку — мотор «запел всеми четырьмя».

Для проверки катушки мы собрали схему с блоком аварийного зажигания климовского завода, который представляет собой транзисторный вибратор, размыкающий цепь первичной обмотки катушки с частотой 150 раз в секунду (рис. 2). Подключенные к высоковольтным выводам свечи положили на медную пластину, соединенную проводом с «минусом» аккумулятора, то есть получили полную имитацию штатной схемы автомобиля. Включив питание, услышали треск непрерывного искрового разряда, но работала только одна свеча (фото 4). Поменяли свечи местами — так и есть, они тут ни при чем: не работает один из выводов катушки. Но должен же ток, выйдя с одного конца вторичной обмотки и пройдя через искровой промежуток одной свечи, как-то попасть на другой конец обмотки?! Путь ему остается только один — «масса» — «минусовый» провод — аккумуляторная батарея — замок зажигания — первичная обмотка катушки. То есть ему главное попасть поближе к виткам вторичной обмотки, а там, глядишь, где-нибудь да пробьется к цели. А раз так, попробуем отключить «минусовый» провод от медной пластинки. Как и следовало ожидать, обе свечи заработали синхронно (фото 5).

Отсюда вывод — в катушке пробита межобмоточная изоляция, то есть для высокого напряжения обе обмотки теперь не изолированы друг от друга (только для высокого напряжения). В обычных одноискровых катушках такого практически не бывает, поскольку там есть возможность разнести первичную обмотку и крайние витки вторичной, на которых напряжение максимально. А в компактных двухискровых, напротив — между любой частью вторичной обмотки и витками первичной, разделенных порой слоем пластмассы толщиной 3–5 мм, может возникать разность потенциалов в десятки киловольт. Особенно когда один из высоковольтных проводов отсоединен от свечи и его наконечник удален от «массы».

Правда, солидные производители обязательно проводят выборочные тесты катушек на пробой. Например, на АТЭ-2 их испытывают в течение 5 минут непрерывной коммутации первичной обмотки с определенной частотой при полностью отключенных высоковольтных проводах. И все же рисковать не стоит, поэтому, проверяя систему зажигания «на искру», примите все меры, чтобы при проворачивании коленвала наконечник высоковольтного провода не отошел от «массы» дальше 5–7 мм.

Стоит ли выбрасывать пробитую катушку или она еще может пригодиться? Ответ: может, но только на машине с распределителем. Высоковольтный провод с неработающего вывода подсоединяем к «массе», а с работающего — к центральному гнезду крышки трамблера. Теперь она будет работать «вечно».

В заключение — об одном неприятном свойстве систем с двухискровыми катушками, о котором конструкторы обычно умалчивают. Речь идет о взрыве глушителя, который нечасто, но все же случается на машинах, оборудованных такими системами. Происходит это после неудачных попыток пуска двигателя, когда водитель подолгу прокручивает его стартером, вместо того, чтобы открыть капот и разобраться, в чем дело. Если пуск затруднен из-за плохого контакта в каком-либо из штекерных разъемов, то мотор, вращаемый стартером, успеет накачать в систему выпуска изрядное количество топливно-воздушной смеси. От вибрации при работе стартера контакт может восстановиться и на свечах одной пары цилиндров возникнут искры. В системе с распределителем двигатель просто начинает работать и выхлопные газы быстро продуют глушитель, но здесь картина иная. В цилиндре, где проскакивает «паразитная» искра, выпускной клапан еще открыт, и фронт пламени, не имея препятствий на своем пути, распространяется по трубам выпускной системы со скоростью до 50 м/с. Мгновенное сгорание смеси в объемистом корпусе глушителя носит взрывной характер. В отличие от обычного «выстрела» в глушителе (например, при позднем зажигании или сбитых фазах), здесь последствия куда более серьезные — глушитель разлетается на куски. Кстати, сидящие в салоне испытывают в этот момент довольно острые ощущения — машина будто подпрыгивает, а звук такой, что на несколько минут закладывает уши.

Учитывая, что на многих автомобилях глушитель расположен в непосредственной близости от бензобака, есть основания опасаться более серьезных последствий. К счастью, о таких случаях мы пока не слышали (дай Бог, чтобы и впредь не услышали). Хочется верить, что двухискровые катушки в будущем станут надежнее и целесообразность их применения перестанут подвергать сомнению.

Фото 1. Бескорпусная двухискровая катушка Б-201.

Фото 2. Двухканальный контактный трамблер штучного изготовления.

Фото 3. Четырехискровой модуль 42.3705.

Рис. 1. Схема системы зажигания с прерывателем и двухискровой катушкой для двухцилиндрового двигателя: 1 — катушка

Б-201; 2 — замок зажигания; 3 — батарея; 4 — конденсатор; 5 — прерыватель; 6 — первичная обмотка; 7 — вторичная обмотка; 8 — свеча.

Рис. 2. Схема проверки двухискровой катушки:

1 — батарея; 2 — транзисторный вибратор;

3 — катушка зажигания;

4 — свеча; 5 — соединительная пластина; 6 — зажим «крокодил»; 7 — искра с вывода, удаленного от места пробоя; 8 — межобмоточный пробой.

Типичный признак внутреннего пробоя — искрит только одна свеча.

Пробитая катушка работает нормально, но только в лабораторных условиях — перемычка между свечами изолирована от «массы».

Ссылка на основную публикацию
Adblock
detector
×
×