17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как увеличить разгон с турбиной

7 главных минусов и 2 плюса турбомоторов

Наддувные моторы постепенно вытесняют атмосферные. Однако некоторые производители сокращают интервал ТО для автомобилей с турбодвигателем. Почему? Давайте разбираться.

Чем турбомотор отличается от атмосферного?

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов.

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

4. Дорогой ремонт

Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

5. Обязательно применять хорошее топливо и смазки

Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор». Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя. Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

6. Необходимость дополнительного охлаждения

Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

7. Проблемы с ликвидностью

Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

Впрочем, есть у турбомоторов и неоспоримые плюсы.

1. Отличная характеристика крутящего момента

Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах. Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка. Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

2. Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

  • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.
Читать еще:  Как убрать царапины с лобового стекла

Как увеличить разгон с турбиной

Форумчанам доброго вечера и такая загадка перед сном.

Стал замечать за своим пасиком такую особенность при разгоне. Вернее оно и раньше было с самой покупки, но стало заметнее при полной нагрузке (ездил на юга с кучей вещей и людей). Решил разобраться.

Описываю. Еду скажем 2500 на четвертой долго и плавно и тут нужно интенсивно ускориться скажем для обгона, уповая на тяговитый турбодвигатель вниз не переключаюсь и утапливаю тапок. Не в пол, на 3/4 и держу в таком положении. Сразу ускорение достаточно бодрое, интенсивность плавно растет с оборотами, но как-то тяжеловато, нет легкости. А нет ее потому как набрал я нужную скорость, скажем 4500 на той же передаче и быстро плавно приотпускаю газ чтобы ехать с пост. скоростью. Но ускорение не стихает а продолжается еще с полсекунды-секунду и даже возрастает! т.е. разгон как-бы залипает, а иногда в этот момент машина прям рвет вперед (вот бы так сразу :mrgreen: ). А как сильно рвет зависит насколько сильно придавил тапок сначала. Чем выше передача тем сильнее эффект. Как-будто излишек наддува не сбрасывается, но откуда еще и рывок вперед? Что самое интересное, если сразу после этого притормозить и повторить упражнение, то разгон сразу гораздо лучше и «залипание» меньше.

Не то чтобы мешает, но почему сразу разгон не столь бодр? Турбина не успевает раскрутиться после ташниловки? Но почему рывок?

Что-то мне подсказывает что это не нормально. Куда бежать? Байпас? Сам ошибки почитать и логи снять не могу, разве что подъехать к румми :-k Опрессовку не делал, ДЗ не чистил пока, просьба ногами не бить :mrgreen: Посторонних звуков (свиста, шипения) не слышно, подергиваний нет.

Есть/было у кого такое?

сброс давления во всяком случае у меня происходит моментально, как только отпустил тапку

вот если резво разгоняться с 0 и быстро перебрасывать передачи то такого и нет — при отпускании газа слышится тихое уффф и не затягивает :-k

Хм хотя может потому что газ не отпуксаю до конца в первом случае. Надо будет попробовать просто бросить педаль. Сброс давления идет только при полном отпускании тапка?
Конечно, машина должна же адекватно реагировать на твои действия :mrgreen: .

Добавлено спустя 4 минуты 6 секунд:

Сброс давления идет только при полном отпускании тапка?
Да нет же, приотпустил, давление упало.

Не совсем понимаю как все это работает. Если я приотпускаю, давление сбрасывается за счет работы байпаса или потому что турбина теряет обороты? Если 2-е то тогда объяснимо — турбина дост. инертна и давление падает постепенно
Клапан стравливает, до поддержания нужной скорости, при этой нагрузке #-o , но это ИМХО.

Добавлено спустя 16 минут 32 секунды:

Mr85
На вот почитай:

Принцип работы турбины
Для получения более четкого представления о принципе работы турбокомпрессора, необходимо ознакомиться с системой функционирования двигателя внутреннего сгорания. На сегодняшний день, большинство дизельных легковых и грузовых автомобилей оснащаются 4-х тактными поршневыми двигателями, работа контролируется при помощи впускных и выпускных клапанов. Каждый рабочий цикл состоит из 4 тактов при 2 полных оборотах коленвала.
• Впуск – при движении поршня вниз, воздух (в дизельном двигателе) или смесь топлива и воздуха (в бензиновом двигателе) проходит через открытый впускной клапан.
• Компрессия – происходит сжатие горючей массы.
• Расширение – смесь воздуха и топлива воспламеняется при помощи свечей (бензиновый двигатель), дизельное топливо впрыскивается под давлением и воспламенение происходит произвольно.
• Выпуск – при движении поршня вверх, выпускаются выхлопные газы.
Данные принципы работы предоставляют следующие пути увеличения эффективности работы двигателя:
Увеличение объема
Увеличение объема обеспечивает увеличение мощности двигателя, так как увеличение камеры сгорания позволяет нагнетание большего объема воздуха и большее колличество сжигаемого топлива. Увеличение объема может быть достигнуто путем увеличения колличества цилиндров или увеличения объема каждого цилиндра. В целом, увеличения объема приводит к увеличению массы двигателя. Этот способ не обеспечивает значительных преимушеств по уровню выбросов и потреблению топлива.
Увеличение скорости работы двигателя
Другим способом увеличения мощности двигателя является увеличение скорости работы двигателя. Увеличение скорости проводится путем увеличения количества ходов поршня на единицу времени. Однако, по техническим причинам этот способ имеет жесткие ограничения. Увеличение скорости работы двигателя приводит к увеличению потерь при накачивании и других операциях, что вызывает падение эффективности работы.

При применении двух первых способов, двигатель обеспечивается только собственным нагнетанием. Воздух для сгорания проходит прямо в цилиндр во время впускного такта. При использовании турбокомпрессора, воздух, поступающий в камеру сгорания предварительно сжимается. В двигатель поступает тот же объем воздуха, однако, более высокое давление обеспечивает прохождение большего колличества воздушной массы, что позволяет увеличить объем сжигаемого топлива. Таким образом, при использовании турбокомпрессора, мощность двигателя увеличивается по отношению к его объему и колличеству потре***емого топлива.
Охлаждение нагнетаемого воздуха
В ходе компрессии, нагнетаемый воздух нагревается до 180 С. При охлаждении, плотность воздуха увеличивается,что позволяет увеличить объем нагнетаемого воздуха.
Охлаждение нагнетаемого воздуха является одной из немногих мер по увеличению мощности двигателей внутреннего сгорания, которые положительно влияют на уровень потребления топлива и уровень выброса вредных веществ. Снижение температуры входящего воздуха обеспечивает снижение температуры сгорания и, таким образом, снижение колличества вырабатываемого NO (x). Увеличение плотности воздуха снижает расход топлива и уровень загрязнения окружающей среды.
Существуют два типа турбокомпрессии – механическая турбокомпрессия и компрессия выхлопных газов.
Механическая турбокомпрессия
При механической турбокомпрессии, воздух сжимается при помощи компрессора, приводимого от двигателя. Однако, часть получаемого увеличения мощности уходит на привод компрессора. В зависимости от размера двигателя, мощность, необходимая для привода компрессора составляет от 10 до 15% от общей выработки двигателя. Таким образом, при сравнении с обычным двигателем такой же мощности, двигатель с механической турбокомпрессией имеет повышенный расход топлива.
Турбокомпрессия выхлопных газов
При использовании компрессии выхлопных газов, энергия газа, которая не используется в обычных условиях, направлена на привод турбины. Компрессор находится на одном валу с турбиной и обеспечивает забор, сжатие и подачу воздуха в камеру сгорания. В этом случае механичекие соединения с двигателем отсутствуют.
Преимущества турбокомпрессии выхлопных газов.
• По сравнению с обычным двигателем такой же мощности, турбодвигатель имеет меньший расход топлива, так как часть энергии выхлопных газов способствует увеличению мощности двигателя. Меньший объем двигателя сокращает термические и др. потери.
• Турбодвигатель имеет значительно лучшее соотношение веса к мощности, т.е. Kw / кг.
• Необходимая площадь двигательного отсека турбодвигателя меньше, чем у обычного двигателя.
• При использовании турбодвигателя, возможно дальнейшее улучшение характеристик крутящего момента для поддержания мощности, близкой к максимальной при очень низкой скорости двигателя, что позволяет избежать частого переключения скоростей при езде в гористой местности.
• Турбодвигатели имеют значительно лучшие характеристики работы в условиях высокогорья. В условиях пониженного давления обычный двигатель теряет значительную часть мощности. В противоположность, рабочие характеристики турбодвигателя улучшаются вследствие увеличения разницы между постоянным давлением вверх по соединениям турбины и пониженным внешним давлением у входа турбины. Низкая плотность воздуха у входа компенсируется, обеспечивая почти нулевую потерю мощности.
• Так как турбодвигатель имеет меньшие размеры, а соответственно и площадь шумовыделяющей поверхности, его шумовые характеристики лучше, чем у обычных двигателей. В данном случае, турбокомпрессор действует как добавочный глушитель.

Читать еще:  Запрещено ли выполнить обгон на подъеме

Правильная эксплуатация вaжна для продления службы турбокомпрессора.

Самые распостраненные ошибки.
Особое внимание к системам смазки и впуска выявляет 2 главные причины поломки турбокомпрессора. Чтобы их избежать, нужно убедится :

• Воздушный и масляной фильтры регулярно проверяются в соответствии с рекомендациями производителя.
• То же самое выполняется и с интервалами обслуживания двигателя.
• Двигатель и оборудование используется так, что это не вредит сроку службы турбины.

Вы можете добится максимального срока службы турбины, если будете следовать нескольким правилам :

Когда запускаете двигатель, используйте минимальный газ и держите двигатель на холостых оборотах минимум 1 минуту.

Полное рабочее давление создается за секунды, но оно только позволяет разогнать движущиеся части турбины в условиях при хорошей смазки. Газовать на двигателе, который лишь несколько секунд назад завелся – значит заставлять турбину вращаться на высоких скоростях в условиях ограниченной смазки. Это может привести к преждевременной поломки турбокомпрессора.

После ремонта турбины или двигателя, убедитесь, что, турбина смазана, добавлением чистого моторного масла до заполнения через входной масляный патрубок. После этого проверте коленвал не заводя двигатель, чтобы масло начало циркулировать по системе под давлением. Заводя двигатель, дайте ему поработать на холостом ходу несколько минут, чтобы убедиться, что система смазки и подшипники турбины работают удовлетворительно.

Низкая температура и редкий запуск турбины

Если двигатель эксплуатировался некоторое время, или если температура воздуха очень низка, проверните двигатель перед запуском, а затем запустите на холостых оборотах. Это позволяет маслу циркулировать и заполнить систему прежде, чем большие нагрузки.

Дайте остыть турбокомпрессору перед выключением зажигания. При нагруженном двигателе, турбокомпрессор работает на очень высоких оборотах и при высокой температуре. Быстрое выключение зажигания или «горячее выключение» создает быстрые переходные процессы и перепады температур в турбине и уменьшает жизнь турбокомпрессора.

Желательно не оставлять двигатель долго работающим на холостых оборотах (более 20-30 минут). При холостых оборотах, турбина генерирует низкое давление и возможны протекания паров масла через соединения турбины.

Это не приносит никакого реального вреда для турбины, только придает синий дым к выхлоту двигателя.

Улитка турбины изготавливается из различных сортов сфероидированного чугуна, чтобы противостоять тепловому воздействию и разрушению крыльчатки. Как и крыльчатка, профиль улитки обработан до полного соответствия форме лопастей крыльчатки. Впускной фланец улитки турбины работает как установочная база для закрепления турбины, несущая нагрузку.

• Обычно это сплав железа со сферойдным графитом
• Обычно это установочная база, несущая вес всей турбины
• Требования
– ударопрочность
– стойкость к окислению
– жаропрочность
– жаростойкость
– легкость механической обработки

Улитка компрессора отлита из алюминия. Используются различные сплавы для различных типов компрессоров. Используются как вакумное литье так «песочное» литье. Точная финальная обработка для соблюдения размеров и качества поверхностей, необходимые для нормальной работы турбины.

• Обычно изготовлена из различных алюминевых сплавов
• точные размеры и формы profile machining to match impeller blade shape
• рабочие температуры до 200 °C
• Основные требования
– Прочность к ударным и механическим нагрузкам
– качество обрабоки и точные размеры

Крыльчатка турбины установлена в корпусе турбины и соединена штифтом, который вращает крыльчатку компрессора.

• качественное покрытие из никелевого сплава
• сделана из прочных и стойких сплавов
• выдерживает температуры работы до 760 °C
• Основные требования
– стойкость к изнашиванию
– стойкость к деформациям
– стойкость к коррозии

-инструкция

Простые способы увеличения давления наддува

Способ редукции давления поступающего на вестгейт, на мой взгляд более правильный способ контроля и регулировки давления нагнетаемого турбиной.

Этот способ применяется во многих механических буст- контроллерах, а так же в его разновидности, называемым в народе «свисток», который применяет фирма Rallitronic Обзор блока Rallitronic

«Свисток» – способ настройки вестгейта. Это просто редуктор давления: он стравливает часть воздуха с вестгейта и получаем, что при давлении в 1.3 атм. на вестгейт давит 1.0 и он открывается чуть позже. Давление к нему подходит от впускного коллектора, по тонкому чёрному шлангу. «Свисток» ничего не обманывает, датчик измеряет давление как положено. Диапазон поднятия давления от 1атм до 1,35атм находится в допустимом диапазоне давлений . ЭБУ не ругается и работает в привычном режиме. Теоретически- это снижается ресурс двигателя, но все параметры просто приближаются к расчетным, не превышая их. Порог срабатывания перепускного клапана не регулируется ЭБУ. Там стоит обычная пневматическая «лягушка» с пружиной, расчитанной на открытие при достижении определённого давления. Но, поскольку точность такого регулятора далека от идеальной, производитель занижает порог срабатывания на пару десятых. Получается примерно 1.0 — 1.15. «Свисток» позволяет более тонко настроить эту систему. ЭБУ только контролирует, чтобы давление на выходе турбины (на входе в дроссельный патрубок) не превысило максимально допустимое значение. И никак не влияет ни на жёсткость пружины, ни на давление. Если это событие происходит, то прописывается ошибка и обороты сбрасываются.

Данное оборудование порой входит в состав зарубежных блоков чип-тюнинга.

Полезно для подбора параметров «свистка» использовать указатель величины буста или компьютер, типа мультитроникс. Показания по мультику 230-232кПа соответствуют давлению буста в 1,3-1,32 бара.

Можно изготовить у токаря или собрать из доступных автодеталей.
В первом варианте с «токарным свистком», имеем фиксированное боковое отверстие, которое надо угадать (контролируя давление) и установить в середине свистка наружу.

Во втором- принцип тот же, только вместо бокового отверстия-отвод, на который ставится через удлинительный шланг ещё один жиклёр. Меняя этот жиклёр, регулируем давление. Боковой отвод тройника — это и есть редукционное отверстие. Только очень большое! Надеваем на него шланг и в шланг ещё один удлинитель с жиклёром. Теперь отверстие стало маленьким, более того, регулируемым. З/Ч для второго варианта это два жиклёра и один тройник. Плюс шланги (6мм) и хомуты. Можно использовать ниппельные удлинители от Газели в качестве держателей жиклёров. Можно использовать обычные камерные/бескамерные «соски». Внешний диаметр у них подходящий, а внутренняя резьба (для золотника) совпадает с резьбой жиклёров для карбюратора. Таким образом поступил наш соклубник sanches86, с ФОРУМ ПЕРВОГО РОССИЙСКОГО КЛУБА ЛЮБИТЕЛЕЙ ПИКАПОВ

Читать еще:  Как определить лицевую сторону ткани

Мы изготавливали на базе тройника для воздуха.

С стороны турбины нарезаем внутренею резьбу на 6мм/0,75. Вкручиваем жиклёр на 1,2мм, можно его посадить на газовый фум. На противоположный отвод тройника устанавливаем шланг, длину и место вывода делаем кому как удобно. В месте вывода шланга ставим ещё один жиклёр, который и подбираем индивидуально, до нужного давления.

Второй жиклёр я изготовил из куска медной трубки 6мм, диаметр жиклёра у меня получился 1,05мм. Если этот жиклёр заменить заглушкой, то давление буста станет по стоку, порядка 1атм. Можно так же применить игольчатый краник Итальянской фирмы CAMOZZI, тогда давление можно будет плавно регулировать.

На базе фитингов 1/8 для воздуха CAMOZZI, можно собрать приличный DIY manual boost controller.

По этой схеме бустконтроллер позволяет не только регулировать давление наддува, но и бороться с турболагом. Дело в том, что штатный вестгейт открывается плавно и тем самым не даёт максимально быстро выйти турбине на рабочие обороты. Что делает данный бустконтроллер — до определённого давления он полностью закрыт, предупреждая начало открытия вестгейта. Вестгейт закрыт и выхлопные газы максимально быстро раскручивают турбину. Когда давление в турбине достигает определённого момента, бустконтроллер открывается, давление воздействует на вестгейт, он открывается и ограничивает поток выхлопных газов на турбину, ограничивая давление наддува, до заданного регулировкой жёсткости пружины контроллера. Как правило это давление, с небольшим запасом, мы делаем 1, 32атм.

Собрать подобное устройство можно на руках, проходя через хозяйственый рынок. Но надо обязательно сделать остановку возле павильона где торгуют газовым оборудованием и попросить просверлить отверстие 0,8мм в тройнике который идёт на вестгейт. Как правило они приторговывают жиклёрами для газовых котлов и на месте их калибруют с помощью шуруповёрта, со сверлом нужного диаметра. Отверстие нужно чтобы когда клапан контроллера закрывается, воздух с вестгейта выходил и не припятствовал ему возвращаться в первоначальное состояние.

Прекрасно сделанные, хромированные фитинги CAMOZZI, а также широкий спектр переходников,вдохновили меня собрать это устройство прямо на прилавке.

Подобные устройства собирает наш одноклубник, Константин из Нижнего Новгорода. Очередная партия Boostcontroller для пикаповодов, DIY manual boost controller

avtoexperts.ru

Ответы (4)

Владельцы автомобилей двигатели, которых оснащены турбиной, должны знать и соблюдать определенные правила их эксплуатации.

Так больше внимания владелец турбированного двигателя должен уделят системам впуска и смазки, которые в первую очередь влияют на его работоспособность. Для избежание возможных отказов в работе двигателя масло, а также воздушный и масляный фильтра должны отвечать всем требованиям разработчиков и находится в надлежащем состоянии.

При этом большое значение имеет запуск и остановка турбированного двигателя, влияющие на срок его эксплуатации.

Турбина двигателя при своей работе разгоняется до достаточно высоких оборотов и в этом случае обязательным условием является стабильная подача смазки к ее вращающимся частям. Поэтому при запуске двигателя в течение первых двух — трех минут не стоит увлекаться педалью газа. Если же начать «газовать» на непрогретом двигателе то ротор турбины может «заголодать» по смазке, чего будет достаточно для выхода турбины из строя или же, как минимум многократно сократится ее ресурс.

Запуск при отрицательных температурах

После запуска турбодвигателя в морозы необходимо дать время на прогрев масла, чтобы его вязкость приобрела нормальные свойства. Если дать нагрузку на непрогретом двигателе, то в узлах подшипников турбины из-за несоответствия вязкости масла, может возникнуть так называемая кавитация (от лат. cavita — пустота), что просто губительна для подшипников.

Остановка двигателя с турбиной

Остановка турбированного двигателя , особенно после продолжительной поездки, также имеет свои особенности и прежде чем заглушить мотор, нужно дать ему остыть. Это связано с тем, что во время работы на высоких нагрузках мотор работает при высоких оборотах и предельном температурном режиме. При этом очень сильно разогревается корпус турбины раскаленными выхлопными газами, охлаждаемый потоком моторного масла. Если же сразу после остановки заглушить двигатель, то прекратится подача масла и резкий перепад температур может вызвать внутреннее напряжение в элементах турбины. Это скажется на сокращении ее эксплуатации и повышает риск ее преждевременного выхода из строя. Помимо этого резкая остановка двигателя вызывает коксование масла, во вращающихся частях турбины образуя слой нагара.

Для того, чтобы продлить жизнь турбированного двигателя существует устройство турбо – таймер, в задачу которого входит задержать остановку двигателя после отключения зажигания. Эта пауза дает возможность охладиться деталям турбо наддува на холостых оборотах.

Упомянутый выше воздушный фильтр напрямую влияет на охлаждение турбины, поэтому необходимо следить за его состоянием и вовремя производить замену, не реже чем

через 10 тыс. км. Если авто эксплуатируется в тяжелых запыленных условиях , то замена выполняется чаще. Турбокомпрессору будет глобально не хватать воздуха и он попросту разорвет фильтр и начнет захватывать весь скопившийся на фильтре мусор (листья, пыль, насекомые и пр). Компрессор может захватить и любые другие предметы , вплоть до гаек, что приведет к ускоренному износу поршневой или может вызвать «срезание» лопастей компрессора и мгновенному отказу турбины. На двигателях спортивных авто фильтра по этой причине «окутаны» металлической сеткой с плотными ячейками.

Длительная работа мотора на холостом ходу

По возможности избегать работы мотора на холостом ходу более 10-15 минут. В данной ситуации давление масла в турбине гораздо выше чем давление подаваемого воздуха, что способствует протеканию масла через соединения, это будет заметно по характерному синему цвету выхлопа. Масло будет оседать на элементах турбины в виде нагара, что по мере пробега скажется на ее ресурсе.

Эксплуатация мотора после ремонта турбокомперессора

Отремонтированный или новый турбокомпрессор перед его установкой должен быть обязательно смазан. Для этого нужно принудительно залить 20 мл моторного масла через отверстие маслоподачи для смазки подшипников и только потом подключить трубопровод подачи масла к турбине. Затем на незаведенном двигателе провернуть коленвал, для заполнения подшипников ротора. После проведения этих предварительных операций можно заводить двигатель.

* После ремонта турбины она должна пройти обкатку на скорости не более 90 км/час в течение 1000 км пробега.

* Всегда использовать только масло, предписанное для турбированых моторов

* Замена масла и масляного фильтра для бензиновых двигателей не более 10 тыс. км и 7,5 тыс. км для дизелей

* При проведении ТО должна выполняться проверка состояния клапана рециркуляции выхлопных газов (EGR), а также очистка системы вентиляции картера

Выполнение этих несложных требований способно многократно продлить ресурс вашего турбированного двигателя.

Ссылка на основную публикацию
Adblock
detector
×
×