4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Радиографический контроль сварных соединений

Радиографический контроль сварных швов и соединений

Среди методов неразрушающей диагностики, лучевой – наиболее точный. Аппаратурой радиографического контроля сварных соединений можно обнаружить внутренние дефекты металла: непровары, микротрещины в зоне термовлияния, раковины, шлаковые включения. Рентгеноскопия необходима при монтаже трубопроводов, производстве опорных каркасов, сварных деталей, работающих на излом. Процедура испытаний регламентирована ГОСТ 7512-86. Данные заносятся в специальные журналы. Применение рентгенографического контроля сопряжено с вредным лучевым воздействием на операторов. Для них разработаны правила техники безопасности.

Сущность метода

Главная цель контроля – выявление несплошностей, способных стать причиной аварии. В основе радиографического метода контроля сварных соединений лежит способность гамма-лучей, рентгеновского излучения рассеиваться при прохождении разнородных сред. По снимку определяют место дефекта, его размеры. Рентгеновский контроль дает качественный и количественный результат.

Диагностический диапазон ограничен чувствительностью радиографического прибора для проверки сварных соединений.

Дефектоскоп НЕ выявляет:

  • пустоты размером меньше стандартных значений на 50%, параллельных направлению луча;
  • несплошности, инородные включения, меньше двух значений чувствительности, расположенные по направлению пучка;
  • включения и трещины, на изображении совпадающие с гранями, острыми углами проверяемой детали.

Все остальные дефекты лучевая радиографическая диагностика распознает. Раковины, трещины, шлак, непровары хорошо видны на экране прибора или снимке. При прохождении зоны сварного соединения лучи не изменяют направление, если металл однородный. На границе разделения сред часть лучей отражаются, рассеиваются, на картинке появляются затемненные участки.

Преимущества и недостатки

Современная радиография остается приемлемым и востребованным методом неразрушающего контроля. Плюсы метода:

  • за долю минуты дает представление о качестве соединений, полученных любой сваркой (ручной электродуговой, газовой, точечной, радиальной и другими видами);
  • по точности результатов радиографическая диагностика превосходит другие методы неразрушающего контроля сварных соединений;
  • прибор выявляет широкий спектр структурных изменений в металле;
  • на картинке видно место расположения дефекта, его тип, размеры;
  • радиографический метод применим для полевых работ: проверки трубопроводов, строительных объектов.

У радиографического метода диагностики сварных соединений имеются недостатки:

  • рентгенография невозможна без специальных приборов, это дорогое оборудование;
  • в качестве расходника используется светочувствительная пленка или пластинки;
  • для диагностики необходимо длительно обучать контролеров, они сдают экзамены в контролирующих организациях;
  • качество контроля зависит от умелой настройки диагностического оборудования;
  • изотопное гамма-излучение и рентгеновские лучи опасны для здоровья.

По точности результатов радиографическая диагностика превосходит другие методы неразрушающего контроля сварных соединений, однако необходимо дорогостоящее оборудование и хорошо обученные контролеры.

Свойства и особенности рентгеновских лучей

Проходимость материалов зависит от длины генерируемых лучей. Рентгеновский поток при прохождении плотных структур поглощается: лучи рассеиваются в пространстве. Чем ниже плотность проверяемых сварных соединений трубопроводов, металлоконструкций или деталей, тем четче получаемое радиографическое изображение. Пустоты, раковины на снимке буду темнее.

Картинка получается благодаря способности некоторых химических реагентов светиться под действием излучения. Они сохраняют эту способность несколько секунд. Этого достаточно, чтобы светочувствительная пленка засветилась.

В процессе рентген-контроля сварных швов выявляются участки разной плотности. Если металл однородный – снимок будет светлым, однотонным. При пустотах появятся затемнения.

Действие некоторых дефектоскопов основано на способности ионизированного воздуха пропускать электрический ток. Проводимость напрямую зависит от степени ионизации. Лучи расщепляют молекулы на своем пути, превращают их в коктейль анионов и катионов. Применение этого свойства помогает получать изображение на осциллографе.

Устройство и принцип работы радиографического оборудования

В любом приборе, используемом для радиографического контроля сварных соединений, имеется излучатель. Он генерирует излучение необходимой частоты, длины. Это – сердце дефектоскопа.

Рентгенографический излучатель представляет собой колбу с откаченным воздухом, в которой расположены анод, катод, элемент накала. Во время разгона электронов возникают лучи. Они образуют направленный пучок. Он пропускается сквозь толщу сварного соединения.

Другая важная часть оборудования для радиографического контроля – фотодиод. Он преобразует энергию лучей в световую энергию. В радиографических приборах, контролирующих качество сварного соединения, устанавливают блоки детекторов, создающих изображение.

Световой сигнал можно преобразовать в цифровой формат, информация поступает в накопитель. На экране данные отображаются в виде полутоновой картинки.

Требования к аппаратам

Рентгеноконтроль сварочных швов зависит от нескольких факторов:

  • интенсивности пропускаемого потока, чтобы с учетом рассеивания получалось четкое изображение;
  • генератор должен работать с одинаковой мощностью на протяжении исследования, только при этом условии показания будут достоверными;
  • требуется высокая чувствительность элемента, улавливающего световой сигнал, иначе картинка будет смазанной;
  • способность прибора улавливать дефекты определяется минимальными размерами распознаваемого объекта, от размера пустот или включений напрямую зависит прочность сварного соединения.

Для радиографического контроля используют приборы различных типов, марок. Их подбирают в зависимости от толщины проверяемого металла, химического состава, предполагаемой зернистости.

Методика проведения радиографического контроля

Проверка проводится на подготовленных соединениях. Их предварительно очищают от окалины, плотных окислов, зачищают до металлического блеска. От качества подготовки поверхности во многом зависит точность полученных результатов.

Процесс радиографического контроля сварных швов состоит из нескольких этапов:

  1. прибор устанавливают так, чтобы с одной стороны проверяемой зоны находился излучатель, с другой – датчик (при использовании любых видов дефектоскопов проверяемый металл всегда находится между двумя частями приборов);
  2. на 10-20 минут включается электропитание, за это время пучок пронизывает сварной валик, поступает на датчик (дефектоскопы работают от сети или на аккумуляторах);
  3. датчик подает сигнал на преобразователь, в итоге получается картинка на пленке, пластинке или экране прибора (вид изображения зависит от марки используемого радиографического прибора для контроля сварных швов);
  4. цифровой аналоговый сигнал записывается в накопитель информации.

В течение небольшого промежутка времени контролер получает изображение. Он расшифровывает его, фиксирует обнаруженные дефекты в специальном журнале. Иногда контролер только делает снимки, расшифровывает их другой специалист.

Техника безопасности

При радиографическом или рентгенографическом контроле сварных соединений важно соблюдать меры предосторожности. Лучевой поток легко проникает в ткани, облучает их в доли секунды. При большой дозе оказывает поражающее действие. Во время пользования прибором контроля необходимо это учитывать.

Основные рекомендации контролерам:

  • необходимо экранировать оборудование, для этого используют свинцовые пластины;
  • излучатель желательно располагать как можно дальше от людей;
  • обязательно должен вестись учет времени пребывания в зоне риска;
  • в зоне излучателя возможна ионизация воздуха, необходимо убрать электрооборудование.

Радиографический метод контроля сварных соединений в минимальных дозах не опасен. Оказывает минимальное воздействие на человека. Если соблюдать ТБ, можно минимизировать риск облучения контролера.

Радиографическая диагностика швов – современный и точный метод определения дефектов. Производители выпускают компактные модели приборов с различной мощностью лучевого потока. Можно выбрать необходимое диагностическое оборудование. Для специализированных компаний лучевой контроль стал стабильным источником доходов. Услуги востребованы.

Радиографический контроль сварных соединений

При соединении металлов с помощью сварки у неопытных мастеров могут возникнуть трудности. В частности, они могут просто не увидеть всех дефектов сварного шва, которые образовались из-за ошибок сварщика. Визуального контроля недостаточно, чтобы выявить скрытые недочеты. И если в условиях домашней сварки это не критично, то на крупном производстве бракованные изделия лишают прибыли.

Существует множество видов контроля сварных швов. От визуального, когда сварщик просто осматривает шов на предмет видимых дефектов, до передовых способов, для которых необходимо специальное оборудование. Об одном из таких способов мы и хотим вам рассказать. В этой статье вы узнаете, что такое радиографический контроль сварных соединений и какова его методика.

Общая информация

Радиографический метод контроля сварных соединений (также рентгенография, рентгеноскопия, рентгенографический контроль) — метод контроля качества с применением рентгеновских лучей. Специальный аппарат устанавливает на место сварного шва. Здесь все по аналогии с рентген аппаратом для снимков костей человека. Рентгеновские лучи пронизывают металл и в случае обнаружения внутренних дефектов легко выходят наружу. Ну а если структура шва плотная и не имеет дефектов, то луч просто не пройдет.

Специальное устройство регистрирует прохождение лучей и делает снимок. На снимке без проблем можно обнаружить наличие дефектов, их размеры и точное расположение. Рентгеновский контроль сварных соединений — это один из наиболее точных методов контроля качества швов. Его часто используют при проверке трубопровода, ответственных изделий, металлоконструкций, к которым предъявлены повышенные требования качества. Особенно заметна популярность радиографического контроля в строительной сфере.

Читать еще:  Мд тюнинг дросселя своими руками

Принцип работы

«Сердцем» рентгеновского аппарата является излучатель, который генерирует и выпускает лучи. Излучатель представляет собой вакуумный сосуд, который содержит анод, катод и его накал. Все эти частицы заряжены и являются электродами. Во время их сильного ускорения как раз и образуются рентгеновские лучи. Это простейшее объяснение.

Для интересующихся объясним подробнее. Катод испускает электроны, которые ускоряются от электрического потенциала, образующегося между анодом и катодом. В этот момент рентгеновские лучи уже начинают образовываться, но их недостаточно. Однако, лучи все же сталкиваются с анодом и начинается их торможение. Из-за этого лучи начинают генерироваться сильнее. В тот же момент из-за столкновения начинают появляться электроны анода. Так образуются лучи, достаточные для формирования полноценного излучения.

Далее лучи выходят и пускаются в заданном направлении. Лучи сталкиваются с металлом и в случае наличия дефектов проходят сквозь него. Либо поглощаются металлом, если дефектов нет. Здесь нужно уточнить, что лучи поглощаются не полностью, некоторые частицы все же остаются. Именно они попадают на пленку и позволяют сделать снимок. На снимке фиксируется количество лучей, прошедших сквозь металл. Если дефектов много, то и лучей тоже будет много. За счет такой особенности и получается узнать размер дефекта и его расположение.

Особенности рентгеновских лучей

Чтобы лучше понять суть рентгенографии нужно разобраться с особенностями самих лучей, благодаря которым как раз и возможен контроль. Лучи обладают свойствами, которые позволяют им проходить сквозь материалы. В нашем случае металл. Чем выше плотность металла, тем хуже проходят лучи. И, соответственно, чем ниже плотность металла, тем лучше они проходят. Здесь все просто: наименьшая плотность присутствует как раз в местах с дефектами.

Поэтому лучи беспрепятственно проходят сквозь металл и это фиксируется на специальном устройстве. Ну а если у шва нет дефектов и структура плотная, то лучи не пройдут, а просто поглотятся металлом. И чем выше плотность, тем больше степень поглощения.

Что касается снимков, то здесь тоже все просто. Существуют химические вещества, которые при контакте с рентгеновским излучением начинают буквально «светиться». Такими веществами покрывается светочувствительная часть фотопластинки, на которой затем появится снимок. Этот принцип является основой для создания рентгеновских снимков сварных швов.

Теперь о некоторых других особенностях. Наверняка вы слышали, что рентгеновское излучение в большом количестве может пагубно влиять на здоровье человека. Это правда. Лучи легко воздействуют на ткани и клетки, облучая их за считанные минуты. В больших дозах это может привести к лучевой болезни. Так что нужно соблюдать осторожность, если вы используете радиографический метод контроля сварных соединений.

Еще один интересный факт: благодаря излучения привычный нам воздух способен проводить электрический ток. Это связано с тем, что рентгеновские лучи ионизируют воздух и расщепляют его частицы на небольшие составляющие, которые в свою очередь имеют электрический заряд.

Плюсы и минусы метода

  • Рентгенографический контроль сварных соединений — один из самых достоверных методов контроля качества швов.
  • С помощью этого метода за считанные минуты выявляются дефекты любого уровня.
  • Есть возможность определить точный размер и расположение дефекта.
  • Контроль занимает мало времени и требует только рентген-аппарат.
  • Возможен контроль сварных соединений трубопроводов и любых других сложных систем.
  • Качество контроля напрямую зависит от настройки рентген-аппарата.
  • Современные рентген-аппараты стоят дорого, особенно компактные модели, которые так популярны в строительной сфере.
  • Для работы понадобится специальная светочувствительная пленка, которая также стоит недешево.
  • Этот метод контроля сварных швов сопряжен с опасностью для здоровья.

Методика контроля

Методика радиографического контроля проста и во многом схожа с обычной рентгенографией, которую мы делаем в поликлинике. Сначала контролер или ответственное лицо устанавливает необходимые настройки аппарата, учитывая плотность металла. Помните, что именно плотность влияет на конечный результат.

Далее подготавливается сварное соединение. Нужно удалить шлак, обработать валик шва и зачистить металл. Затем либо деталь помещается в аппарат (если контроль стационарный в отдельной комнате), либо аппарат помещается на соединение (если контроль выездной и используются компактные модели). Шов должен находиться между излучателем и пленкой. Излучатель включается, лучи проходят сквозь металл и попадают на пленку. Мы получаем снимок, на котором видны все дефекты. Теперь можно выключить аппарат и подождать 10-20 секунд. Затем деталь извлекается из ренигенографа (или рентгенограф снимается с металла). Снимки отдаются специалисту для их изучения или остаются у контролера.

Техника безопасности

Как мы уже говорили, данный метод контроля сопряжен с некоторой опасностью для здоровья. Не нужно пренебрегать этим, думая, что небольшие дозы радиации не повлияют на вас. Если вы работаете контролером и постоянно имеете дело с рентгенографией, то соблюдайте следующие рекомендации.

Во-первых, самое главное правило при работе с рентгеном — нужно экранировать прибор. Это не даст лучам распространяться за пределы зоны контроля. Для этих целей можно использовать металлические листы. Если вы работаете в помещении, то его стены также должны быть оборудованы экранирующими пластинами. Так лучи не будут представлять опасности для других работников, находящихся на объекте или в цеху.

Во-вторых, постарайтесь как можно меньше времени проводить рядом с аппаратом. Если вы проводите радиографический метод контроля сварных соединений на улице, то лучше отойдите в сторону. Если вы работаете в помещении, то постарайтесь сократить время своего пребывания в нем. Также на вас должны быть средства индивидуальной защиты. В помещении и рядом с аппаратом на улице не должны проходить посторонние работники.

В-третьих, перед началом работ нужно убедиться, что аппарат работает исправно и все настройки выставлены правильно. Большинство несчастных случаев связаны именно с неправильной настройкой или неисправностью рентгена.

В-четвертых, следите за дозой лучей, которые вы получаете при каждом контроле. Да, небольшие дозы не вредны для здоровья, но они обладают свойством накапливания и в конечном итоге могут стать причиной серьезных заболеваний. Следите, чтобы полученная вами доза радиации успевала выводиться из организма до начала следующего контроля. Чтобы узнать дозу можно использовать дозиметр.

В-пятых, не забывайте, что из-за лучей воздух может сильно ионизироваться, что приведет к образованию электрического тока. Следите за допустимым значением ионизации воздуха, особенно, если работаете в закрытом помещении.

Вместо заключения

Вот и все, что мы хотели рассказать вам о рентгенографическом методе контроля. Это один из самых точных и достоверных способов выявить скрытые от глаз дефекты. С его помощью можно провести контроль как на производстве, так и на выезде, поскольку производители предлагают компактные модели. Их легко можно взять с собой и выполнять контроль даже под открытым небом.

Конечно, радиографический контроль сварных соединений требует определенных знаний и опыта, чтобы читать снимки. Но вместе с тем вы получаете навык, который поможет вам безошибочно выявлять дефекты даже в идеальных на вид швах. А вы использовали в работе рентгенограф? Поделитесь в комментариях своим опытом контроля качества швов с помощью данного прибора, это будет полезно для наших читателей. Желаем удачи в работе!

Радиографический метод контроля

С момента появления первых способов соединения деталей при помощи сварки встал вопрос о необходимости контроля качества соединительных швов. Опираясь на существующие технологии, разработчики создали различные методики, позволяющие с той или иной точностью выявить грозящие разрушению конструкций дефекты. Но среди них нет одного, универсального, способного удовлетворить все существующие запросы производства. На сегодняшний день при проведении сварочных работ всё равно приходится выбирать, чему следует отдать предпочтение.

  • Более простым и дешёвым процессам, не требующим наличия сложного оборудования, способным дать достаточно приблизительную оценку состояния шва.
  • Довольно сложным и дорогостоящим методикам, которые применимы только на располагающем определёнными технологическими возможностями производстве, зато показывающим более полную и объективную картину.
Читать еще:  Предупреждающие плакаты по электробезопасности

В ситуациях, когда прочность шва играет ключевую роль и недопустимы даже незначительные его дефекты, приходится задействовать пусть и затратные, но точные способы дефектоскопии. Именно к таким относится радиографический контроль сварных соединений.

Основанный на принципах просвечивания контролируемого участка детали рентгеновскими или гамма-лучами, метод радиографического контроля сварных швов – один из самых точных. Как и все технологически сложные процессы, он имеет свои достоинства и недостатки.

Признанные достоинства

Основными преимуществами подобного способа дефектоскопии принято считать:

  • Возможность выявления скрытых дефектов, находящихся внутри сварного шва. Поскольку невидимые снаружи каверны и трещины снижают прочность готового изделия точно так же, как и те, которые находятся на поверхности, их необходимо своевременно обнаружить, что простым методикам часто не под силу.
  • Высокую точность полученных данных, позволяющих оценить размеры и характер дефекта, место его расположения. На основании полученной информации появляется возможность выявить причину возникновения брака и принять меры к её устранению.
  • Малое время, необходимое для проведения обследования и оценки данных. Это означает, что метод радиографического контроля сварных швов применим не только на ответственных участках работы, но и в массовом производстве.
  • Возможность документирования результатов. Подобно тому, как врач подшивает в медицинскую карту больного рентгеновский снимок, проводящий технологический контроль специалист может подшить в паспорт готового изделия снимок с точными данными обследования.

Существующие недостатки

Широкому распространению современной технологии мешают существенные и пока не устранённые недостатки.

  • Требуется наличие сложного специального оборудования. Такое оснащение стоит денег, а это значит, что его покупка не под силу организациям с ограниченным бюджетом. Для домашнего пользования подобная методика точно не подходит.
  • Необходимы специфические расходные материалы, доступ к которым ограничен.
  • Обязателен жёсткий контроль за правильным использованием оборудования и оборотом расходных материалов, поскольку при нарушении инструкций по их применению и хранению они могут представлять опасность для здоровья и даже жизни людей.
  • Работающий с оборудованием и материалами персонал должен обладать необходимой, довольно высокой, квалификацией. Освоить сложный процесс под силу далеко не каждому.

Основываясь на перечисленных достоинствах и недостатках, следует оценивать для каждого конкретного случая необходимость в оснащение производства участком радиографического контроля сварных швов.

Основные принципы

Суть процесса, нормируемого ГОСТ 7512-86, состоит в просвечивании контролируемого участка рентгеновскими или гамма-лучами от источника, помещённого в специальную защитную капсулу. Эта капсула необходима для того, чтобы защитить от вредного излучения находящихся поблизости людей и оборудования. Поскольку однородный металл поглощает лучи лучше, чем нарушающие его структуру пустоты, то места дефектов проявляются в виде светлых пятен, форма и размеры которых соответствуют форме и размерам выявленных трещин, каверн и других пустот. При этом регистрация результатов дефектоскопии может производиться различными способами.

  • На бумагу или плёнку, поверхность которых покрыта слоем химического вещества, чувствительного к излучению. Такой метод фиксации данных дефектоскопии точен, но снижает скорость проведения обследования. Он хорошо зарекомендовал себя при изготовлении ограниченных партий ответственных деталей высокой точности.
  • С помощью специальных веществ, получивших название «сцинтилляторы», обладающих способностью поглощать не видимое глазу излучение и преобразовывать его в видимый свет. С помощью нехитрого преобразователя получаемое при этом изображение выводится на монитор, что даёт возможность производить дефектоскопию сварного шва в реальном времени. Эта технология подходит для массового производства, а также применяется для контроля сварных соединений строящихся и ремонтируемых трубопроводов. В последнем случае капсулу с излучающим веществом, как правило, помещают внутрь трубопровода и, вместе с остальным оборудованием, выполняют мобильной.

Ключевые моменты

Для того чтобы результаты радиографического контроля были достоверны, следует выполнить ряд условий.

  • С поверхности контролируемого шва удаляются окалина, шлак и другие загрязнения, из-за которых может быть искажена реальная картина.
  • Плотность потока излучения должна быть достаточной для того, чтобы сделать возможным регистрацию толщины контролируемого объекта.
  • На протяжении всего времени обследования плотность излучения должна быть стабильной и иметь постоянный характер.
  • Согласно требованиям ГОСТ, для каждого объекта контроля разрабатываются технологические карты.

Характеристики источника излучения подбираются в зависимости от типа исследуемого материала и его толщины. Только когда перечисленные требования соблюдены, можно полностью полагаться на полученные результаты.

Безопасность – превыше всего!

Одной из важнейших проблем, которую следует решить, используя методику радиографического контроля сварных соединений, это обеспечение мер по технике безопасности.

  • Во избежание широкого распространения излучение, используемое оборудование должно быть надёжно экранировано. В качестве одного из возможных вариантов защиты, подойдут листы свинца. Впрочем, современная промышленность производит и другие материалы, вроде специальных пластиков и даже тканей. Их также можно использовать, ведь главное – чтобы защита была герметична и хорошо выполняла своё назначение.
  • Оператор, управляющий процессом, должен быть максимально удалён от установки, а посторонние лица удалены из зоны, где производится обследование.
  • Если возникла острая необходимость пребывания людей в зоне повышенной опасности при работе оборудования, то работников нужно обеспечить средствами индивидуальной защиты. Время самого пребывания в зоне контроля следует максимально сократить, поскольку даже малые дозы излучения накапливаются с течением времени, оказывая негативное влияние на организм человека.
  • При использовании в качестве источника излучения радиоактивных веществ, обеспечить их безопасное хранение, а также транспортировку к месту проведения работ.

Недопустимо использовать заведомо неисправную технику. Это может повлиять не только на результаты дефектоскопии. Под угрозой окажется здоровье людей, причём не только тех, что обеспечивают функционирование оборудования. Излучение, накопленное в самой детали, способно оказать негативное воздействие на всех, кто даже случайно оказался рядом.

Область применения

Несмотря на определённые трудности, связанные с использованием, радиография находит всё более широкое применение. Основная причина – высокая точность получаемых результатов. К тому же, методика позволяет решить такую проблему, как обнаружение внутренних дефектов. При правильном подходе, технология может с успехом использоваться почти во всех областях промышленности и строительства.

  • Возведение несущих каркасов многоэтажных зданий или безопорных перекрытий.
  • Изготовление корпусов судов вне зависимости от конструктивных особенностей их набора и обшивки.
  • Прокладка трубопроводов, по которым впоследствии будут перекачиваться различные виды топлива или просто вода, пищевые продукты или ядовитые химикаты.
  • Производство подвергающихся высоким нагрузкам особо ответственных деталей самолётов и ракет.
  • Проверка находящихся в длительной эксплуатации металлических конструкций путепроводов и мостов.
  • Контроль состояния сварных швов оружейных систем.
  • Изготовление высокоточного медицинского оборудования.

Во всех этих случаях может быть использован радиографический метод контролья.

Важно учесть заблаговременно

Собираясь приобрести промышленный рентгенографический аппарат, нужно точно определиться, какие детали и материалы предстоит обследовать с его помощью. Ведь на сегодняшний день выпускается большое количество подобного рода систем, а характеристики каждой модели имеют определённые ограничения. Всё поступающее на рынок оборудование рассчитано на выполнение узкого круга задач. Ввиду того что устройства проходят обязательную сертификацию и представляют повышенную опасность, их самостоятельное изготовление недопустимо!

Рентгеновские аппараты

По своей конструкции рентгеновские аппараты отличаются характеристиками излучающей трубки, на которые в первую очередь влияют сила тока, его напряжение и габариты излучателя. Отталкиваясь от этих параметров устройства с различным размером фокусного пятна, углом выходя излучения и максимально возможной толщиной просвечиваемой стали. Встречаются рентгеновские аппараты непрерывного и импульсного действия, кабельные и моноблочные.

Гамма-дефектоскопы

В некоторых случаях для обеспечения радиографического контроля предпочтительнее использование не рентгеновской аппаратуры, а гамма-дефектоскопов, внутрь которых помещают закрытые радиоактивные источники. В качестве излучающего материала могут быть задействованы изотопы тулия, селена, иридия, цезия, кобальта и т. п. Возможности оборудования, например, толщина просвечиваемого металла, во многом зависят от используемого радиоактивного вещества, при замене которого изменяются и характеристики излучения.

Важный стандарт

Для ознакомления с требованиями к радиографическому контролю в полном объёме целесообразно изучить ГОСТ 7512-86. В этом документе имеется вся необходимая информация. Тем же, кто собирается использовать методику на производстве, изучение стандарта строго обязательно, поскольку ответственность за его несоблюдение нешуточная.

Читать еще:  Диск сцепления камаз 55111

Радиографический метод контроля сварных соединений Ч.1 Контроль рентгеном

Содержание

Свойства рентгеновских лучей

Рентгеновские лучи — это один из видов электромагнитного излучения. Длина волны рентгеновских лучей существенно отличается от длины волны видимого света и составляет 6*10-13 — 10-9м. Лучи рентгена ионизируют газы и воздействуют на живых существ. Они обладают способностью нагревать предметы на которые воздействуют и они не отклоняются электрическими и магнитными полями.

Рентгеновское излучение обладает большей энергией, чем лучи видимого света и способно воздействовать на фотоплёнку и фотобумагу и поглощаться разными веществами в различной степени. Например, металлом и неметаллическими включениями такие лучи поглощаются по-разному.

Такие особенности рентгеновских лучей обусловили их широкое применение в различных областях, в том числе и для неразрушающего рентгеновского контроля сварных соединений.

Сущность и особенности неразрушающего контроля сварки рентгеном

С помощью такого метода контроля можно выявить такие дефекты в сварных соединениях, как поры, раковины, сварные трещины, непровары, неметаллические включения в металле.

Контроль сварного шва рентгеном происходит по следующей схеме: поток рентгеновского излучения направляется на проверяемое соединение, а с обратной стороны соединения помещают фотобумагу, рентгеновскую бумагу, или же специальную плёнку, чувствительную к лучам рентгена.

Различные сварные дефекты хуже поглощают лучи, чем однородный металл и на плёнке они проявятся в виде светлых пятен. По их очертаниям и величине можно судить о форме и размерах сварных дефектов. Максимально возможная толщина сварного соединения, которое можно проконтролировать рентгеном, составляет 100мм.

Схема просвечивания сварного шва рентгеновскими лучами

Схема контроля рентгеном сварного соединения представлена на рисунке слева, где позициями обозначены:

1 — рентгеновская трубка; 2 — проверяемое сварное соединение; 3 — фотоплёнка (или рентгеновская бумага).

Эффективность радиографического контроля

Радиографический контроль позволяет эффективно обнаруживать внутренние дефекты в сварных соединениях: различные виды сварочных трещин, непровары, раковины и скопления пор, шлаковых и неметаллических включений, скопления тугоплавких металлов, например, вольфрама.

При радиографическом контроле невозможно обнаружить нарушения сварного шва, размер которых меньше удвоенной чувствительности контроля. Также не обнаруживаются непровары и трещины, направление которых совпадает с направлением просвечивания. Если изображения дефектов на полученных снимках совпадают с какими-либо другими изображениями (других предметов, острых углов или резких перепадов толщин металла), то такие дефекты также остаются «невидимыми» для дефектоскопа.

Чувствительность контроля радиографией

При радиографическом методе неразрушающего контроля его чувствительность выражается в процентах. Определить чувствительность контроля можно по следующему выражению:

Где m — наименьшая величина сварного дефекта, мм; s — толщина контролируемого сварного соединения, мм.

На показатель чувствительности радиографического контроля оказывают влияние следующие факторы:

1. Величина энергии прямого просвечивания
2. Толщина контролируемого сварного соединения и плотность металла
3. Место расположения дефекта в металле и форма дефекта
4. Геометрические размеры проверяемого соединения и его поверхность
5. Источник излучения и фокусное расстояние
6. Оптическая плотность, контраст снимка, качество плёнки или фотобумаги

В теории учесть совокупность всех эти факторов не представляется возможным, поэтому на практике чувствительность контроля устанавливают экспериментально. Она может быть определена как наименьший размер проволочного или канавочного эталона, проявляемого на снимке.

Рентгеновские аппараты для контроля сварных швов

Рентгеновский аппарат предназначен для генерирования лучей рентгена с нужными характеристиками. В состав рентгеновского аппарата входят: рентгеновская трубка, генератор тока очень высокого напряжения и приборы для управления.

Классификация рентгеновских аппаратов и область их применения

Рентгеновские аппараты, в зависимости от характера анодного напряжения, бывают двух типов: аппараты непрерывного действия и аппараты импульсные. В импульсных аппаратах под воздействием тока, напряжением несколько десятков киловольт, формируется мощный импульс излучения. Такие аппараты малогабаритны и легко транспортируемы. Их высокая манёвренность позволяет их использовать в полевых условиях — при монтажных работах, на строительных площадках и др.

В зависимости от особенностей конструкции, рентгеновские аппараты бывают кабельные и моноблочные. В моноблочных аппаратах рентгеновская трубка и высоковольтный трансформатор находятся в одном блоке. Такие блоки достаточно компактны для транспортирования. Такая конструкция позволяет их использовать преимущественно для контроля в полевых условиях. Но существуют также не передвижные моноблочные аппараты.

В кабельных рентгеновских аппаратах рентгеновская трубка находится в защитном корпусе, а высоковольтный трансформатор — в отдельном узле, от которого электрический ток высокого напряжения подаётся к рентгеновской трубке. Кабельные аппараты не так мобильны, как моноблочные и поэтому используются в пределах какого-либо цеха или лаборатории.

По величине анодного напряжения аппараты бывают следующих типов: до 160кВ и от 160 до 400кВ. Для рентгеновской дефектоскопии труднодоступных участков используют портативные рентгеновские аппараты, оснащённые портативными излучателями.

Устройство рентгеновской трубки

Рентгеновские лучи формируются в анодах специальных рентгеновских трубок. Получаются они при торможении быстро летящих электронов. Трубка представляет собой баллон, из которого откачивают воздух.

Устройство рентгеновской трубки схематично показано на рисунке слева. Внутри баллона находятся два электрода — анод (поз.1) и катод (поз.4). Катод изготовлен из вольфрама, к нему подводится постоянный электрический ток, напряжением от нескольких десятков, до сотен киловольт.

Питание катода происходит при помощи повышающего трансформатора и выпрямителя. Под воздействием очень высокого напряжения, вольфрамовый катод нагревается и излучает поток электронов (поз.3). Высокое напряжение на катоде необходимо, чтобы сообщить электронам требуемую кинетическую энергию.

Анод (поз.1) изготовлен из вольфрамомолибденового сплава и он необходим для торможения быстролетящих электронов. Их поток, двигающийся с большой скоростью, направлен от катода к аноду. При ударе об анод, электроны теряют свою кинетическую энергию, происходит их торможение, а часть кинетической энергии, потерянной электронами, превращается в рентгеновское излучение, состоящее из фотонов тормозного излучения.

При этом следует понимать, что рентгеновские лучи вредны для здоровья человека, поэтому необходима защита при работе с рентгеновскими аппаратами. Для защиты рентгеновскую трубку изолируют защитным свинцовым кожухом, в котором сделано узкое отверстие для выхода потока рентгеновских лучей, который направляют на проверяемое сварное соединение.

Технология контроля сварных швов рентгеном

Проведение рентгеновской дефектоскопии включает в себя следующие технологические операции:

1. Зачистка поверхности. Перед проверкой поверхность сварного соединения необходимо подготовить. Для этого его поверхность зачищают от шлака и загрязнений, иначе они будут отображаться на плёнке и затруднять расшифровку изображения на ней.

2. Разметка соединения. Проверяемое соединение разбивается на участки. На каждом из таких участков должен находиться специальный маркировочный знак и эталон чувствительности. Эти знаки и эталоны устанавливают на сварном шве, со стороны источника излучения.

При этом канавочные эталоны необходимо располагать на расстоянии 5мм, или более, с направлением канавок поперёк шва. Проволочные эталоны крепят на сам сварной шов. Направление проволок также должно быть поперёк шва.

В некоторых случаях, когда нет возможности разместить эталоны со стороны источника излучения, при контроле цилиндрических, шарообразных и других пустотелых сварных соединений, эти эталоны устанавливают со стороны фотобумаги или рентгеновской плёнки.

3. Просвечивание сварного соединения. Схемы просвечивания могут быть разные, в зависимости от типа сварного соединения. Гост 7512 рекомендует следующие схемы, представленные на рисунке справа:

4. Просмотр и расшифровка результатов. Анализировать полученные снимки необходимо после полного их высыхания в затемнённой комнате, используя для этой цели осветители-негатоскопы. Расшифровка снимков — это сложная и трудоёмкая задача, требующая большой ответственности и высокого уровня квалификации от проверяющего работника.

Для расшифровки выбирают плёнки, на которых отсутствуют различные пятна, загрязнений и механические повреждения эмульсионного слоя, т.к. такие дефекты делают процесс расшифровки сложным и неточным. На плёнке обязательно должны прослеживаться нанесённые ограничительные маркировочные знаки, метки и эталоны чувствительности. Качество проведённой рентгеновской дефектоскопии оценивают по результатам обнаружения эталонных дефектов. В качестве условной единицы уровня качества принимают размер наименьшего из найденных эталонных дефектов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector
×
×